【題目】(1)計(jì)算:(﹣3)2﹣(π﹣4)0+()﹣2;
(2)(a+2)2+(1﹣a)(1+a).
(3)解方程:=;
(4)解不等式組:
【答案】(1)12;(2)4a+5;(3)x=3;(4)﹣2≤x<1
【解析】
(1)本題根據(jù)有理數(shù)的乘方、零指數(shù)冪、負(fù)整數(shù)指數(shù)冪等知識(shí)點(diǎn)進(jìn)行解答.
(2)本題根據(jù)乘法公式等知識(shí)點(diǎn)進(jìn)行解答.
(3)本題根據(jù)分式方程的解答步驟進(jìn)行解答.
(4)分別求出不等式組中兩不等式的解集,找出解集的公共部分即可確定出不等式組的解集.
解:(1)原式=9﹣1+4
=8+4
=12;
(2)原式=a2+4a+4+1﹣a2
=4a+5;
(3)去分母得:3x﹣3=2x,
解得:x=3,
經(jīng)檢驗(yàn)x=3是分式方程的解;
(4),
由①得:x<1,
由②得:x≥﹣2,
則不等式組的解集為﹣2≤x<1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)擁有一條生產(chǎn)某品牌酸奶的生產(chǎn)線,已知該酸奶銷售額為4800元時(shí)的銷量比銷售額為800元時(shí)的銷量要多500瓶.現(xiàn)接到一單生產(chǎn)任務(wù),需要在16天內(nèi)完成,為按時(shí)完成任務(wù),該企業(yè)招收了新工人甲,設(shè)甲第x天(x為整數(shù))生產(chǎn)的酸奶數(shù)量為y瓶,y與x滿足下列關(guān)系式:y=.
(1)求每瓶酸奶的售價(jià)為多少元?
(2)如圖,設(shè)第x天每瓶酸奶的成本是p元,已知p與x之間的關(guān)系可以用圖中的函數(shù)圖象來刻畫.若甲第x天創(chuàng)造的利潤(rùn)為w元,請(qǐng)直接寫出w與x之間的函數(shù)表達(dá)式,并求出第幾天的利潤(rùn)最大,最大利潤(rùn)是多少元?(利潤(rùn)=售價(jià)﹣成本)
(3)設(shè)(2)小題中第m天利潤(rùn)達(dá)到最大值,若要使第(m+1)天的利潤(rùn)比第m天的利潤(rùn)至少多50元,則第(m+1)天每瓶酸奶至少應(yīng)提價(jià)幾元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在某溫度不變的條件下,通過一次又一次地對(duì)氣缸頂部的活塞加壓,測(cè)出每一次加壓后氣缸內(nèi)氣體的體積與氣體對(duì)氣缸壁產(chǎn)生的壓強(qiáng)的關(guān)系可以用如圖所示的函數(shù)圖象進(jìn)行表示,下列說法正確的是( )
A.氣壓P與體積V的關(guān)系式為
B.當(dāng)氣壓時(shí),體積V的取值范圍為
C.當(dāng)體積V變?yōu)樵瓉淼囊话霑r(shí),對(duì)應(yīng)的氣壓P也變?yōu)樵瓉淼囊话?/span>
D.當(dāng)時(shí),氣壓P隨著體積V的增大而減小
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形紙片ABCD沿直線BE折疊,點(diǎn)C恰好落在點(diǎn)G處,連接BG并延長(zhǎng),交CD于點(diǎn)H,延長(zhǎng)EG交AD于點(diǎn)F,連接FH.若AF=FD=6cm,則FH的長(zhǎng)為_____cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合與探究.
如圖1,拋物線y=x2﹣x﹣2與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,經(jīng)過點(diǎn)B的直線交y軸于點(diǎn)E(0,2).
(1)求A,B,C三點(diǎn)的坐標(biāo)及直線BE的解析式.
(2)如圖2,過點(diǎn)A作BE的平行線交拋物線于點(diǎn)D,點(diǎn)P是拋物線上位于線段AD下方的一個(gè)動(dòng)點(diǎn),連接PA,PD,求OAPD面積的最大值.
(3)若(2)中的點(diǎn)P為拋物線上一動(dòng)點(diǎn),在x軸上是否存在點(diǎn)Q,使得以A,D,P,Q為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線y=﹣x+b分別與x軸、y軸交于點(diǎn)A、B,且點(diǎn)A的坐標(biāo)為(4,0),四邊形ABCD是正方形.
(1)填空:b= ;
(2)求點(diǎn)D的坐標(biāo);
(3)點(diǎn)M是線段AB上的一個(gè)動(dòng)點(diǎn)(點(diǎn)A、B除外),試探索在x上方是否存在另一個(gè)點(diǎn)N,使得以O、B、M、N為頂點(diǎn)的四邊形是菱形?若不存在,請(qǐng)說明理由;若存在,請(qǐng)求出點(diǎn)N的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:△ABC 內(nèi)接于⊙O,過點(diǎn) A 作⊙O 的切線交 CB 的延長(zhǎng)線于點(diǎn) P,且∠PAB=45°.
(1)如圖 1,求∠ACB 的度數(shù);
(2)如圖 2,AD 是⊙O 的直徑,AD 交 BC 于點(diǎn) E,連接 CD,求證:AC CD ;
(3)如圖 3 ,在(2)的條件下,當(dāng) BC 4CD 時(shí),點(diǎn) F,G 分別在 AP,AB 上,連接 BF,FG,∠BFG=∠P,且 BF=FG,若 AE=15,求 FG 的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的最低點(diǎn)為 D(0,2)
(1)求 m, n 的值
(2)直線 y=kx+4 交 y 軸于點(diǎn) F,與拋物線交于 A,B 兩點(diǎn),直線 AD 交 x 軸于點(diǎn) P.
①求證:BP//y 軸
②作 BQ⊥AD 交 y 軸于點(diǎn) Q,求證:對(duì)于每個(gè)給定的實(shí)數(shù) k,四邊形 FQPB 均為平行四邊形
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com