【題目】如圖,拋物線x軸于A、B兩點,直線y=kx+b經(jīng)過點A,與這條拋物線的對稱軸交于點M1,2),且點M與拋物線的頂點N關(guān)于x軸對稱.

1)求拋物線的函數(shù)關(guān)系式;

2)設(shè)題中的拋物線與直線的另一交點為C,已知Px,y)為線段AC上一點,過點PPQx軸,交拋物線于點Q.求線段PQ的最大值及此時P坐標;

3)在(2)的條件下,求AQC面積的最大值.

【答案】1;(2PQ有最大值=,此時P(2,3);(3

【解析】

1)由于點M和拋物線頂點關(guān)于x軸對稱,即可得到點N的坐標,進而表示出該拋物線的頂點坐標式函數(shù)解析式;

2)將點A與點M的坐標代入y=kx+b求出kb的值,確定直線AC的解析式,得到點P坐標為(x,x+1),根據(jù)直線AC和拋物線的解析式,即可得到PQ的縱坐標,從而得到關(guān)于PQ的長和P點橫坐標的函數(shù)關(guān)系式,根據(jù)所得函數(shù)的性質(zhì)即可求出PQ的最大值及對應(yīng)的P點坐標;
3)由于△AQC面積=AQP面積+CPQ面積,根據(jù)三角形面積公式將PQ的最大值代入計算即可求解.

1)由題意知,拋物線頂點N的坐標為(1,-2),

2)由(1得:x=-13,即A-10)、B30);

∵將A-10)、M12)代入y=kx+b中得:
解得:
∴直線AC的函數(shù)關(guān)系式為y=x+1,

解方程組

x=-15,即A-1,0)、C5,6);

P在線段AC之間
設(shè)P坐標為(x,x+1),則Q的坐標為
PQ=x+1 - =

有最大值

此時

3

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC的三個頂點的坐標分別為A(﹣2,3)、B(﹣60)、C(﹣1,0).

1)畫出△ABC關(guān)于原點成中心對稱的三角形△ABC′;

2)將△ABC繞坐標原點O逆時針旋轉(zhuǎn)90°,畫出圖形,直接寫出點B的對應(yīng)點B″的坐標;

3)請直接寫出:以A、B、C為頂點的平行四邊形的第四個頂點D的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:在梯形ABCD中,AD//BC,ACBC10,點E在對角線AC上,且CEAD,BE的延長線與射線AD、射線CD分別相交于點F、G.設(shè)AD=x,AEF的面積為y

1)求證:∠DCA=∠EBC;

2)如圖,當點G在線段CD上時,求y關(guān)于x的函數(shù)解析式,并寫出它的定義域;

3)如果DFG是直角三角形,求AEF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:如圖1D,EABC的邊BC上,若ADE是等邊三角形則稱ABC可內(nèi)嵌,ADE叫做ABC的內(nèi)嵌三角形.

1)直角三角形______可內(nèi)嵌.(填寫一定、一定不不一定

2)如圖2,在ABC中,∠BAC=120°,ADEABC的內(nèi)嵌三角形,試說明AB2=BDBC是否成立?如果成立,請給出證明;如果不一定成立,請舉例說明.

3)在(2)的條件下,如果AB=1AC=2,求ABC的內(nèi)嵌ADE的邊長

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)的圖象與x軸交于A(3,0)和B(1,0)兩點,交y軸于點C(0,3),點C、D是二次函數(shù)圖象上的一對對稱點,一次函數(shù)的圖象過點B、D.

(1)請直接寫出D點的坐標.

(2)求二次函數(shù)的解析式.

(3)根據(jù)圖象直接寫出使一次函數(shù)值大于二次函數(shù)值的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】今年某市為創(chuàng)評全國文明城市稱號,周末團市委組織志愿者進行宣傳活動.班主任梁老師決定從4名女班干部(小悅、小惠、小艷和小倩)中通過抽簽的方式確定2名女生去參加.

抽簽規(guī)則:將4名女班干部姓名分別寫在4張完全相同的卡片正面,把四張卡片背面朝上,洗勻后放在桌面上,梁老師先從中隨機抽取一張卡片,記下姓名,再從剩余的3張卡片中隨機抽取第二張,記下姓名.

(1)該班男生小剛被抽中 事件,小悅被抽中 事件(不可能必然隨機”);第一次抽取卡片小悅被抽中的概率為 ;

(2)試用畫樹狀圖或列表的方法表示這次抽簽所有可能的結(jié)果,并求出小惠被抽中的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】合肥市某學(xué)校搬遷,教師和學(xué)生的寢室數(shù)量在增加,若該校今年準備建造三類不同的寢室,分別為單人間(供一個人住宿),雙人間(供兩個人住宿),四人間(供四個人住宿).因?qū)嶋H需要,單人間的數(shù)量在2030之間(包括2030),且四人間的數(shù)量是雙人間的5.

(1)2015年學(xué)校寢室數(shù)為64,2017年建成后寢室數(shù)為121,20152017年的平均增長率;

(2)若建成后的寢室可供600人住宿,求單人間的數(shù)量;

(3)若該校今年建造三類不同的寢室的總數(shù)為180,則該校的寢室建成后最多可供多少師生住宿?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一個三角形紙片ABC,面積為25,BC的長為10,∠B、∠C都為銳角,MAB邊上的一動點(MAB不重合),過點MMNBCAC于點N,設(shè)MN=x
1)用x表示△AMN的面積;
2)△AMN沿MN折疊,使△AMN緊貼四邊形BCNM(邊AMAN落在四邊形BCNM所在的平面內(nèi)),設(shè)點A落在平面BCNM內(nèi)的點A′,△AMN與四邊形BCNM重疊部分的面積為y
①用含x的代數(shù)式表示y,并寫出x的取值范圍.
②當x為何值時,重疊部分的面積y最大,最大為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 如圖,在平面直角坐標系中,將ABO繞點A順時針旋轉(zhuǎn)到AB1C1的位置,點BO分別落在點B1C1處,點B1x軸上,再將AB1C1繞點B1順時針旋轉(zhuǎn)到A1B1C2的位置,點C2x軸上,將A1B1C2繞點C2順時針旋轉(zhuǎn)到A2B2C2的位置,點A2x軸上,依次進行下去.若點A,0),B(0,2),則點B2016的坐標為____________________

查看答案和解析>>

同步練習(xí)冊答案