【題目】如圖,⊙O是△ABC的外接圓,AC為直徑,弦BD=BA,BE⊥DC交DC的延長線于點E.
(1)求證:∠1=∠BAD;
(2)求證:BE是⊙O的切線.
【答案】
(1)
證明:∵BD=BA,
∴∠BDA=∠BAD,
∵∠1=∠BDA,
∴∠1=∠BAD;
(2)
證明:連接BO,
∵∠ABC=90°,
又∵∠BAD+∠BCD=180°,
∴∠BCO+∠BCD=180°,
∵OB=OC,
∴∠BCO=∠CBO,
∴∠CBO+∠BCD=180°,
∴OB∥DE,
∵BE⊥DE,
∴EB⊥OB,
∵OB是⊙O的半徑,
∴BE是⊙O的切線.
【解析】(1)根據(jù)等腰三角形的性質(zhì)和圓周角定理得出即可;(2)連接BO,求出OB∥DE,推出EB⊥OB,根據(jù)切線的判定得出即可;本題考查了三角形的外接圓與外心,等腰三角形的性質(zhì),切線的判定,熟練掌握切線的判定定理是解題的關(guān)鍵.
【考點精析】本題主要考查了圓周角定理和三角形的外接圓與外心的相關(guān)知識點,需要掌握頂點在圓心上的角叫做圓心角;頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角;一條弧所對的圓周角等于它所對的圓心角的一半;過三角形的三個頂點的圓叫做三角形的外接圓,其圓心叫做三角形的外心才能正確解答此題.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD、AEFG均為正方形,其中E在BC上,且B、E兩點不重合,并連接BG.根據(jù)圖中標(biāo)示的角判斷下列∠1、∠2、∠3、∠4的大小關(guān)系何者正確?( )
A.∠1<∠2
B.∠1>∠2
C.∠3<∠4
D.∠3>∠4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題的逆命題為真命題的是( )
A.如果a=b,那么
B.平行四邊形是中心對稱圖形
C.兩組對角分別相等的四邊形是平行四邊形
D.內(nèi)錯角相等
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題探究:
①新知學(xué)習(xí)
若把將一個平面圖形分為面積相等的兩個部分的直線叫做該平面圖形的“面線”,其“面線”被該平面圖形截得的線段叫做該平面圖形的“面徑”(例如圓的直徑就是圓的“面徑”).
②解決問題
已知等邊三角形ABC的邊長為2.
(1)如圖一,若AD⊥BC,垂足為D,試說明AD是△ABC的一條面徑,并求AD的長;
(2)如圖二,若ME∥BC,且ME是△ABC的一條面徑,求面徑ME的長;
(3)如圖三,已知D為BC的中點,連接AD,M為AB上的一點(0<AM<1),E是DC上的一點,連接ME,ME與AD交于點O,且S△MOA=S△DOE .
①求證:ME是△ABC的面徑;
②連接AE,求證:MD∥AE;
(4)請你猜測等邊三角形ABC的面徑長l的取值范圍(直接寫出結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,I是△ABC的內(nèi)心,AI的延長線和△ABC的外接圓相交于點D,連接BI、BD、DC.下列說法中錯誤的一項是( 。
A.線段DB繞點D順時針旋轉(zhuǎn)一定能與線段DC重合
B.線段DB繞點D順時針旋轉(zhuǎn)一定能與線段DI重合
C.∠CAD繞點A順時針旋轉(zhuǎn)一定能與∠DAB重合
D.線段ID繞點I順時針旋轉(zhuǎn)一定能與線段IB重合
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,點O在AB上,經(jīng)過點A的⊙O與BC相切于點D,與AC,AB分別相交于點E,F(xiàn),連接AD與EF相交于點G.
(1)求證:AD平分∠CAB;
(2)若OH⊥AD于點H,F(xiàn)H平分∠AFE,DG=1.
①試判斷DF與DH的數(shù)量關(guān)系,并說明理由;
②求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,小敏利用課余時間制作了一個臉盆架,圖2是它的截面圖,垂直放置的臉盆與架子的交點為A,B,AB=40cm,臉盆的最低點C到AB的距離為10cm,則該臉盆的半徑為cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:二次函數(shù)y=ax2+bx+6(a≠0)的圖象與x軸交于A,B兩點(點A在點B的左側(cè),與y軸交于點C,點A、點B的橫坐標(biāo)是一元二次方程x2﹣4x﹣12=0的兩個根.
(1)請直接寫出點A、點B的坐標(biāo).
(2)請求出該二次函數(shù)表達(dá)式及對稱軸和頂點坐標(biāo).
(3)如圖,在二次函數(shù)對稱軸上是否存在點P,使△APC的周長最。咳舸嬖,請求出點P的坐標(biāo);若不存在,那個說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=x2﹣2x
x | … | ﹣1 | 0 | 1 | 2 | 3 | … |
y | … | 0 | ﹣1 | … |
(1)請在表內(nèi)的空格中填入適當(dāng)?shù)臄?shù);
(2)請在所給的平面直角坐標(biāo)系中畫出y=x2﹣2x的圖象;
(3)當(dāng)x再什么范圍內(nèi)時,y隨x的增大而減;
(4)觀察y=x2﹣2x的圖象,當(dāng)x在什么范圍內(nèi)時,y>0.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com