【題目】如圖,是反比例函數(shù)在第一象限內(nèi)的圖像上的兩點(diǎn),且兩點(diǎn)的橫坐標(biāo)分別是24,則的面積是( )

A.B.C.D.

【答案】C

【解析】

過(guò)AACx軸于C,過(guò)BBDx軸于D,先根據(jù)反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征及A、B兩點(diǎn)的橫坐標(biāo)求出AB的坐標(biāo),根據(jù)反比例函數(shù)系數(shù)k的幾何意義可得SAOC=SBOD=,根據(jù)S四邊形AODB=SAOC+SBOD=SAOC+S梯形ACDB可得出SAOB=S梯形ACDB,利用梯形面積公式即可得答案.

AB反比例函數(shù)圖像上的兩點(diǎn),橫坐標(biāo)分別為24,

∴當(dāng)x=2時(shí),y=2,即A點(diǎn)坐標(biāo)為(2,2),

當(dāng)x=4時(shí),y=1,即B點(diǎn)坐標(biāo)為(41

SAOC=SBOD=×2×2=2,

S四邊形AODB=SAOC+SBOD=SAOC+S梯形ACDB

SAOB=S梯形ACDB=BD+ACCD=×1+2×4-2=3.

故選C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,O的半徑為4,BO外一點(diǎn),連接OB,且OB=6,過(guò)點(diǎn)BO的切線BD,切點(diǎn)為D,延長(zhǎng)BOO于點(diǎn)A,過(guò)點(diǎn)A作切線BD的垂線,垂足為C

1)求證:AD平分BAC;

2)求AC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,己知O為坐標(biāo)原點(diǎn),點(diǎn),以點(diǎn)A為旋轉(zhuǎn)中心,把順時(shí)針旋轉(zhuǎn),得.

(Ⅰ)如圖①,當(dāng)旋轉(zhuǎn)后滿足軸時(shí),求點(diǎn)C的坐標(biāo).

(Ⅱ)如圖②,當(dāng)旋轉(zhuǎn)后點(diǎn)C恰好落在x軸正半軸上時(shí),求點(diǎn)D的坐標(biāo).

(Ⅲ)在(Ⅱ)的條件下,邊上的一點(diǎn)P旋轉(zhuǎn)后的對(duì)應(yīng)點(diǎn)為,當(dāng)取得最小值時(shí),求點(diǎn)P的坐標(biāo)(直接寫(xiě)出結(jié)果即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的弦,OPOAAB于點(diǎn)P,過(guò)點(diǎn)B的直線交OP的延長(zhǎng)線于點(diǎn)C,且CPCB

1)求證:BC是⊙O的切線;

2)若OA5OP3,求CB的長(zhǎng);

3)設(shè)AOP的面積是S1,BCP的面積是S2,且.若⊙O的半徑為4BP,求tanCBP

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一座鋼結(jié)構(gòu)橋梁的框架是ABC,水平橫梁BC長(zhǎng)18米,中柱AD6米,其中DBC的中點(diǎn),且ADBC.

(1)求sinB的值;

(2)現(xiàn)需要加裝支架DE、EF,其中點(diǎn)EAB上,BE=2AE,且EFBC,垂足為點(diǎn)F,求支架DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,的半徑為1;直線經(jīng)過(guò)圓心,交、兩點(diǎn),直徑,點(diǎn)是直線上異于的一個(gè)動(dòng)點(diǎn),直線于點(diǎn),點(diǎn)是直線上另一點(diǎn),且.

()如圖1,點(diǎn)的內(nèi)部,求證:的切線;

()如圖2,點(diǎn)的外部,且,求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,AB⊙O的一條弦,OD⊥AB,垂足為C,交⊙O于點(diǎn)D,點(diǎn)E⊙O上.

1)若∠AOD=52°,求∠DEB的度數(shù);

2)若OC=3OA=5,求AB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知在四邊形中,,相交于點(diǎn),

1)求證:∠=

2)求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在正方形ABCD中,AB=8,點(diǎn)P在邊CD上,tanPBC=,點(diǎn)Q是在射線BP上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)QAB的平行線交射線AD于點(diǎn)M,點(diǎn)R在射線AD上,使RQ始終與直線BP垂直.

1)如圖1,當(dāng)點(diǎn)R與點(diǎn)D重合時(shí),求PQ的長(zhǎng);

2)如圖2,試探索: 的比值是否隨點(diǎn)Q的運(yùn)動(dòng)而發(fā)生變化?若有變化,請(qǐng)說(shuō)明你的理由;若沒(méi)有變化,請(qǐng)求出它的比值;

3)如圖3,若點(diǎn)Q在線段BP上,設(shè)PQ=x,RM=y,求y關(guān)于x的函數(shù)關(guān)系式,并寫(xiě)出它的定義域.

查看答案和解析>>

同步練習(xí)冊(cè)答案