【題目】如圖,直線(xiàn)y=﹣x+4與坐標(biāo)軸分別交于點(diǎn)A、B,與直線(xiàn)y=x交于點(diǎn)C.在線(xiàn)段OA上,動(dòng)點(diǎn)Q以每秒1個(gè)單位長(zhǎng)度的速度從點(diǎn)O出發(fā)向點(diǎn)A做勻速運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)P從點(diǎn)A出發(fā)向點(diǎn)O做勻速運(yùn)動(dòng),當(dāng)點(diǎn)P、Q其中一點(diǎn)停止運(yùn)動(dòng)時(shí),另一點(diǎn)也停止運(yùn)動(dòng).分別過(guò)點(diǎn)P、Q作x軸的垂線(xiàn),交直線(xiàn)AB、OC于點(diǎn)E、F,連接EF.若運(yùn)動(dòng)時(shí)間為t秒,在運(yùn)動(dòng)過(guò)程中四邊形PEFQ總為矩形(點(diǎn)P、Q重合除外).
(1)求點(diǎn)P運(yùn)動(dòng)的速度是多少?
(2)當(dāng)t為多少秒時(shí),矩形PEFQ為正方形?
【答案】(1)點(diǎn)P運(yùn)動(dòng)的速度是每秒2個(gè)單位長(zhǎng)度;(2)t=2或4;
【解析】
(1)先求得A,B兩點(diǎn)坐標(biāo),得到的值,再根據(jù)相似三角形對(duì)應(yīng)邊成比例得到AP與EP的比值,進(jìn)而得到點(diǎn)P的速度;
(2)分Q,P兩點(diǎn)相遇前后兩種情況進(jìn)行討論,當(dāng)PQ=PE時(shí),矩形PEFQ為正方形,由用關(guān)于t的式子表示各線(xiàn)段的長(zhǎng),然后求出t的值即可.
解:(1)∵直線(xiàn)y=﹣x+4與坐標(biāo)軸分別交于點(diǎn)A、B,
∴x=0時(shí),y=4,y=0時(shí),x=8,
∴,
當(dāng)t秒時(shí),QO=FQ=t,則EP=t,
∵EP∥BO,
∴,
∴AP=2t,
∵動(dòng)點(diǎn)Q以每秒1個(gè)單位長(zhǎng)度的速度從點(diǎn)O出發(fā)向點(diǎn)A做勻速運(yùn)動(dòng),
∴點(diǎn)P運(yùn)動(dòng)的速度是每秒2個(gè)單位長(zhǎng)度;
(2)如圖,當(dāng)PQ=PE時(shí),矩形PEFQ為正方形,
則∵OQ=FQ=t,PA=2t,
∴QP=8﹣t﹣2t=8﹣3t,
∴8﹣3t=t,
解得:t=2;
如圖2,當(dāng)PQ=PE時(shí),矩形PEFQ為正方形,
∵OQ=t,PA=2t,
∴OP=8﹣2t,
∴QP=t﹣(8﹣2t)=3t﹣8,
∴t=3t﹣8,
解得:t=4;
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:關(guān)于x的一元二次方程x2—(m—1)x+m+2=0
(1)若方程有兩個(gè)相等的實(shí)數(shù)根,求m的值;
(2)若Rt△ABC中,∠C=90°,tanA的值恰為(1)中方程的根,求cosB的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,△BPC是等邊三角形,BP、CP的延長(zhǎng)線(xiàn)分別交AD于點(diǎn)E、F,連結(jié)BD、DP,BD與CF相交于點(diǎn)H.給出下列結(jié)論,其中正確結(jié)論的個(gè)數(shù)是( )
①△BDE∽△DPE;②;③;④tan∠DBE=.
A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(教材呈現(xiàn))下圖是華師版九年級(jí)上冊(cè)數(shù)學(xué)教材第78頁(yè)的部分內(nèi)容.
例1 求證:三角形的一條中位線(xiàn)與第三邊上的中線(xiàn)互相平分.
已知:如圖,在中,,,.
求證:、互相平分.
證明:連結(jié)、.
請(qǐng)根據(jù)教材提示,結(jié)合圖①,寫(xiě)出完整的解題過(guò)程.
(結(jié)論應(yīng)用)如圖②,連結(jié)圖①的、,分別與、、交于點(diǎn)、、.
(1)若,求點(diǎn)、之間的距離.
(2)若四邊形的面積為2,則的面積為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)的圖象與軸交于點(diǎn),對(duì)稱(chēng)軸為直線(xiàn),,下列結(jié)論:①;②9a+3b+c=0;③若點(diǎn),點(diǎn)是此函數(shù)圖象上的兩點(diǎn),則;④.其中正確的個(gè)數(shù)( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A、B的坐標(biāo)分別為(4,0)、(0,2),點(diǎn)C為線(xiàn)段AB上任意一點(diǎn)(不與點(diǎn)A、B重合).CD⊥OA于點(diǎn)D,點(diǎn)E在DC的延長(zhǎng)線(xiàn)上,EF⊥y軸于點(diǎn)F,若點(diǎn)C為DE中點(diǎn),則四邊形ODEF的周長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在菱形ABCD中,對(duì)角線(xiàn)AC與BD相交于點(diǎn)O,再添加一個(gè)條件,仍不能判定四邊形ABCD是矩形的是 ( 。
A.AB=ADB.OA=OBC.AC=BDD.DC⊥BC
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線(xiàn)與x軸交于點(diǎn),點(diǎn),與y軸交于點(diǎn)C,且過(guò)點(diǎn).點(diǎn)P、Q是拋物線(xiàn)上的動(dòng)點(diǎn).
(1)求拋物線(xiàn)的解析式;
(2)當(dāng)點(diǎn)P在直線(xiàn)OD下方時(shí),求面積的最大值.
(3)直線(xiàn)OQ與線(xiàn)段BC相交于點(diǎn)E,當(dāng)與相似時(shí),求點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】中華文明,源遠(yuǎn)流長(zhǎng),中華漢字,寓意深廣.為傳承中華優(yōu)秀傳統(tǒng)文化,某中學(xué)德育處組織了一次全校2000名學(xué)生參加的“漢字聽(tīng)寫(xiě)”大賽.為了解本次大賽的成績(jī),學(xué)校德育處隨機(jī)抽取了其中200名學(xué)生的成績(jī)作為樣本進(jìn)行統(tǒng)計(jì),制成如下不完整的統(tǒng)計(jì)圖表:
成績(jī)x(分)分?jǐn)?shù)段 | 頻數(shù)(人) | 頻率 |
50≤x<60 | 10 | 0.05 |
60≤x<70 | 30 | 0.15 |
70≤x<80 | 40 | 0.2 |
80≤x<90 | m | 0.35 |
90≤x<100 | 50 | n |
頻數(shù)分布直方圖
根據(jù)所給的信息,回答下列問(wèn)題:
(1)m=________;n=________;
(2)補(bǔ)全頻數(shù)分布直方圖;
(3)這200名學(xué)生成績(jī)的中位數(shù)會(huì)落在________分?jǐn)?shù)段;
(4)若成績(jī)?cè)?/span>90分以上(包括90分)為“優(yōu)”等,請(qǐng)你估計(jì)該校參加本次比賽的2000名學(xué)生中成績(jī)是“優(yōu)”等的約有多少人?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com