【題目】某一公路的道路維修工程,準備從甲、乙兩個工程隊選一個隊單獨完成,根據(jù)兩隊每天的工程費用和每天完成的工程量可知,若由兩隊合做6天可以完成,共需工程費用385200元;若單獨完成,甲隊比乙隊少用5天,每天的工程費用甲隊比乙隊多4000元。

1)求甲、乙獨做各需多少天?

2)若從節(jié)省資金的角度,應該選擇哪個工程隊?

【答案】110 15 2)選甲比較節(jié)約資金.

【解析】

1)設甲獨做要x天,乙獨做要y天,根據(jù)題意列方程即可.

2)設甲獨做要1天要m元,乙獨做要1天要n元,再計算每個工程隊的費用進行比較即可.

1)設甲獨做要x天,乙獨做要y

解得:

故甲獨做要10天,乙獨做要15

2)設甲獨做要1天要m元,乙獨做要1天要n

解得

甲獨做要的費用為:

乙獨做要的費用為:

所以選甲

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某天然氣公司的主輸氣管道從A市的北偏東60°方向直線延伸,測繪員在A處測得要安裝天然氣的M小區(qū)在A市的北偏東30°方向,測繪員沿主輸氣管道步行1000米到達C處,測得小區(qū)M位于點C的北偏西75°方向,試在主輸氣管道AC上尋找支管道連接點N,使其到該小區(qū)鋪設的管道最短,并求AN的長.(精確到1米,≈1.414,≈1.732)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1所示矩形ABCD中,BC=x,CD=y,yx滿足的反比例函數(shù)關系如圖2所示,等腰直角三角形AEF的斜邊EFC點,MEF的中點,則下列結(jié)論正確的序號是___.①當x=3時,EC<EM;②當y=9時,EC>EM③當x增大時,ECCF的值增大;④當y增大時,BEDF的值不變。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,鐵路的路基是等腰梯形ABCD,斜坡AD、BC的坡度i=1:1.5,路基AE高為3米,現(xiàn)由單線改為復線,路基需加寬4米,(即AH=4米),加寬后也成等腰梯形,且GH、BF斜坡的坡度i'=1:2,若路長為10000米,則加寬的土石方量共是____立方米.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知四邊形ABCD是正方形,△ADE是等邊三角形,求∠BEC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】Rt△ABC中,∠B=900,AC=100cm, ∠A=600,D從點C出發(fā)沿CA方向以4cm/s的速度向點A勻速運動,同時點E從點A出發(fā)沿AB方向以2cm/s的速度向點B勻速運動,當其中一個點到達終點時,另一個點也隨之停止運動,設點DE運動的時間是t秒(0t≤25)過點DDF⊥BC于點F,連結(jié)DE、EF。

1)四邊形AEFD能夠成為菱形嗎?若能,求相應的t值,若不能,請說明理由。

2)當t為何值時,△DEF為直角三角形?請說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,以AB為直徑作圓O,分別交BC于點D,交CA的延長線于點E,過點DDHAC于點H,連接DE交線段OA于點F.

(1)求證:DH是圓O的切線;

(2)若AEH的中點,求的值;

(3)若EA=EF=1,求圓O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】平面直角坐標系xoy中,點P的坐標為(m+1,m-1).

1)試判斷點P是否在一次函數(shù)y=x-2的圖象上,并說明理由;

2)如圖,一次函數(shù)y= -x+3的圖象與x軸、y軸分別相交于點A、B,若點P在△AOB的內(nèi)部,求m的取值范圍.

3)若點P在直線AB上,已知點R,,S(,)在直線y=kx+b上,b2+=mb, +=kb+4,判斷的大小關系

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點M是正方形ABCD的邊BC上一點,連接AM,點E是線段AM上一點,∠CDE的平分線交AM延長線于點F

(1)如圖1,若點E為線段AM的中點,BMCM12,BE,求AB的長;

(2)如圖2,若DADE,求證:BF+DFAF

查看答案和解析>>

同步練習冊答案