【題目】下列說法正確的是(  )

A.線段AB和線段BA表示的不是同一條線段B.x2y的系數(shù)是1,次數(shù)是2

C.多項式4x2y2xy+1的次數(shù)是3D.射線AB和射線BA表示的是同一條射線

【答案】C

【解析】

根據(jù)線段沒有方向之分,射線有方向可判斷出A,D對錯,根據(jù)單項式次數(shù)是所有字母之和和多項式的次數(shù)是單項式里次數(shù)最高的,可判斷出B,C對錯

A.線段沒有方向先說那個字母都可以,故A錯誤,

B.單項式的次數(shù)是所有字母指數(shù)和,所以次數(shù)是3,故B錯誤,

C.多項式的次數(shù)是以單項式里面的最高次數(shù)為準(zhǔn),故C正確,

D.射線是有方向的,所以表示的不是同一條射線.

故選C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,Rt△ABO的兩直角邊OA、OB分別在x軸的負(fù)半軸和y軸的正半軸上,O為坐標(biāo)原點,A、B兩點的坐標(biāo)分別為(-3,0)、(0,4),拋物線經(jīng)過點B,且頂點在直線上.

(1)求拋物線對應(yīng)的函數(shù)關(guān)系式;

(2)若把△ABO沿x軸向右平移得到△DCE,點A、B、O的對應(yīng)點分別是D、C、E,當(dāng)四邊形ABCD是菱形時,試判斷點C和點D是否在該拋物線上,并說明理由;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程:(1)6x-7x+1=0;(2)4x-3x=52;

(3)(x-2)(x-3)=12;(4)5x-18=9x

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果正n邊形的內(nèi)角是它中心角的兩倍,那么邊數(shù)n的值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊中, ,當(dāng)直角三角板角的頂點上移動時,斜邊始終經(jīng)過邊的中點,設(shè)直角三角板的另一直角邊相交于點E.設(shè) ,那么之間的函數(shù)圖象大致是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于二次函數(shù)和一次函數(shù),把 稱為這兩個函數(shù)的再生二次函數(shù),其中t是不為零的實數(shù),其圖象記作拋物線L.現(xiàn)有點A20)和拋物線L上的點B1,n),請完成下列任務(wù):

【嘗試】(1)當(dāng)t=2時,拋物線 的頂點坐標(biāo)為   ;

2)判斷點A   (填是或否)在拋物線L上;

3n的值是   ;

【發(fā)現(xiàn)】通過(2)和(3)的演算可知,對于t取任何不為零的實數(shù),拋物線L總過定點,坐標(biāo)為      

【應(yīng)用】二次函數(shù)是二次函數(shù)和一次函數(shù)的一個再生二次函數(shù)嗎?如果是,求出t的值;如果不是,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖點D、E分別在等邊ΔABCBC、CA上,且CD=AE,聯(lián)結(jié)AD、 BE.

(1)求證:BE=AD

(2)延長DABEF,求∠BFD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題共10分)ABAC 相交于點A, BDCD相交于點D,探究∠BDC與∠B 、 ∠C、∠BAC的關(guān)系

小明是這樣做的

以點A為端點作射線AD

∵∠1是△ABD的外角,∴∠1= ∠B+∠BAD

同理∠2=∠C+∠CAD

∴∠1+∠2=∠B+∠BAD+∠C+∠CAD即∠BDC=∠B+∠C+∠BAC

小英的思路是延長BDAC于點E

(1)按小英的思路完成∠BDC=∠B+∠C+∠BAC這一結(jié)論.

2按照上面的思路解決如下問題如圖在△ABC,BE、CD分別是∠ABC∠ACB的角平分線,ACE,ABDBE、CD相交于點O,∠A=60°求∠BOC的度數(shù).

3)如圖△ABC,BO、CO分別是∠ABC與∠ACB的角平分線,BO、CO相交于點O猜想∠BOC與∠A有怎樣的關(guān)系并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,以AB為直徑的⊙O分別與BC,AC相交于點D,E,BD=CD,過點D作⊙O的切線交邊AC于點F.

(1)求證:DF⊥AC;

(2)若⊙O的半徑為5,∠CDF=30°,求的長(結(jié)果保留π).

查看答案和解析>>

同步練習(xí)冊答案