【題目】為了擴(kuò)大內(nèi)需,讓惠于農(nóng)民,豐富農(nóng)民的業(yè)余生活,鼓勵(lì)送彩電下鄉(xiāng),國(guó)家決定對(duì)購(gòu)買彩電的農(nóng)戶實(shí)行政府補(bǔ)貼.規(guī)定每購(gòu)買一臺(tái)彩電,政府補(bǔ)貼若干元,經(jīng)調(diào)查某商場(chǎng)銷售彩電臺(tái)數(shù)y(臺(tái))與補(bǔ)貼款額()之間大致滿足如圖①所示的一次函數(shù)關(guān)系.隨著補(bǔ)貼款額的不斷增大,銷售量也不斷增加,但每臺(tái)彩電的收益()會(huì)相應(yīng)降低且之間也大致滿足如圖②所示的一次函數(shù)關(guān)系.

(1)在政府未出臺(tái)補(bǔ)貼措施前,該商場(chǎng)銷售彩電的總收益額為多少元?

(2)在政府補(bǔ)貼政策實(shí)施后,分別求出該商場(chǎng)銷售彩電臺(tái)數(shù)和每臺(tái)家電的收益與政府補(bǔ)貼款額之間的函數(shù)關(guān)系式;

(3)要使該商場(chǎng)銷售彩電的總收益()最大,政府應(yīng)將每臺(tái)補(bǔ)貼款額定為多少?并求出總收益的最大值.

【答案】1)該商場(chǎng)銷售家電的總收益為800×200=160000(元)

2)根據(jù)題意設(shè)

y=k1x+800,Z=k2x+200

∴400k1+800=1200200k2+200=160

解得k1=1,k2=-

∴y=x+800,Z=-x+200

(3)W=yZ=x+800-x+200=-x-1002+162000

∵-0,∴W有最大值.當(dāng)x=100時(shí),W最大=162000

政府應(yīng)將每臺(tái)補(bǔ)貼款額x定為100元,總收益有最大值

其最大值為162000元.

【解析】

試題(1)根據(jù)圖示可得未出臺(tái)政策之前臺(tái)數(shù)為800臺(tái),每臺(tái)的收益為200元;(2)利用待定系數(shù)法求出函數(shù)解析式;(3)利用二次函數(shù)的性質(zhì)求出最值.

試題解析:(1)銷售家電的總收益為800×200=160000(元);

2)依題意可設(shè),,

解得

所以;

3

政府應(yīng)將每臺(tái)補(bǔ)貼款額定為100元,總收益最大值,其最大值為162000元。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】《道德經(jīng)》中的“道生一,一生二,二生三,三生萬(wàn)物”道出了自然數(shù)的特征.在數(shù)的學(xué)習(xí)過(guò)程中,我們會(huì)對(duì)其中一些具有某種特性的數(shù)進(jìn)行研究,如學(xué)習(xí)自然數(shù)時(shí),我們研究了奇數(shù)、偶數(shù)、質(zhì)數(shù)、合數(shù)等.現(xiàn)在我們來(lái)研究另一種特珠的自然數(shù)—“純數(shù)”.定義;對(duì)于自然數(shù)n,在計(jì)算n+(n+1)+(n+2)時(shí),各數(shù)位都不產(chǎn)生進(jìn)位,則稱這個(gè)自然數(shù)n為“數(shù)”,例如:32是”純數(shù)”,因?yàn)橛?jì)算32+33+34時(shí),各數(shù)位都不產(chǎn)生進(jìn)位;23不是“純數(shù)”,因?yàn)橛?jì)算23+2425時(shí),個(gè)位產(chǎn)生了進(jìn)位.

1)判斷20192020是否是“純數(shù)”?請(qǐng)說(shuō)明理由;

2)求出不大于100的“純數(shù)”的個(gè)數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】問(wèn)題背景:在綜合與實(shí)踐課上,老師讓同學(xué)們以矩形紙片的剪拼為主題開(kāi)展數(shù)學(xué)活動(dòng).如圖1:將矩形紙片ABCD沿對(duì)角線AC剪開(kāi),得到ABCACD.并且量AB4cm,AC8cm,問(wèn)題解決:

1)將圖1中的ACD以點(diǎn)為A旋轉(zhuǎn)中心,按逆時(shí)針?lè)较蚰苻D(zhuǎn)∠α,使∠α=∠BAC,得到如圖2所示的AC'D,過(guò)點(diǎn)CAC'的平行線,與DC'的延長(zhǎng)線交于點(diǎn)E,則四邊形ACEC'的形狀是   

2)縝密小組將圖1中的ACD以點(diǎn)A為旋轉(zhuǎn)中心,按逆時(shí)針?lè)较蛐D(zhuǎn),使B、A、D三點(diǎn)在同一條直線上,得到如圖3所示的AC'D,連接CC',取CC'的中點(diǎn)F,連接AF并延長(zhǎng)到點(diǎn)G,使FGAF,連接CG、C'G,得到四邊形ACGC',發(fā)現(xiàn)它是正方形,請(qǐng)你證明這個(gè)結(jié)論.

實(shí)踐探究:(3)創(chuàng)新小組在縝密小組發(fā)現(xiàn)結(jié)論的基礎(chǔ)上,進(jìn)行如下操作:將ABC沿著BD方向平移,使點(diǎn)B與點(diǎn)A重合,此時(shí)A點(diǎn)平移至A'點(diǎn),A'CBC'相交于點(diǎn)H,如圖4所示,連接CC',試求tanC'CH的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】20191月有300名教師參加了新技術(shù)支持未來(lái)教育培訓(xùn)活動(dòng),會(huì)議就面向未來(lái)的教育家庭教育這兩個(gè)問(wèn)題隨機(jī)調(diào)查了60位教師,并對(duì)數(shù)據(jù)進(jìn)行了整理、描述和分析.下面給出了部分信息:

a.關(guān)于家庭教育問(wèn)題發(fā)言次數(shù)的頻數(shù)分布直方圖如下(數(shù)據(jù)分成6組:0≤x4,4≤x8,8≤x12,12≤x1616≤x20,20≤x≤24):

b.關(guān)于家庭教育問(wèn)題發(fā)言次數(shù)在8≤x12這一組的是:

8899910101010101011111111

c面向未來(lái)的教育家庭教育這兩問(wèn)題發(fā)言次數(shù)的平均數(shù)、眾數(shù)、中位數(shù)如下:

問(wèn)題

平均數(shù)

中位數(shù)

眾數(shù)

面向未來(lái)的學(xué)校教育

11

10

9

家庭教育

12

m

10

根據(jù)以上信息,回答下列問(wèn)題:

1)表中m的值為______

2)在此次采訪中,參會(huì)教師更感興趣的問(wèn)題是______(填面向未來(lái)的教育家庭教育),理由是______;

3)假設(shè)所有參會(huì)教師都接受調(diào)查,估計(jì)在家庭教育這個(gè)問(wèn)題上發(fā)言次數(shù)超過(guò)8次的參會(huì)教師有______位.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在⊙O中,AB為直徑,AC為弦.過(guò)BC延長(zhǎng)線上一點(diǎn)G,作GDAO于點(diǎn)D,交AC于點(diǎn)E,交⊙O于點(diǎn)F,MGE的中點(diǎn),連接CF,CM.

(1)判斷CM與⊙O的位置關(guān)系,并說(shuō)明理由;

(2)若∠ECF=2A,CM=6,CF=4,求MF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】九(1)班數(shù)學(xué)興趣小組經(jīng)過(guò)市場(chǎng)調(diào)查,整理出某種商品在第x1≤x≤90)天的售價(jià)與銷售量的相關(guān)信息如下表:

時(shí)間x(天)

1≤x50

50≤x≤90

售價(jià)(元/件)

x40

90

每天銷量(件)

2002x

已知該商品的進(jìn)價(jià)為每件30元,設(shè)銷售該商品的每天利潤(rùn)為y[

1)求出yx的函數(shù)關(guān)系式;

2)問(wèn)銷售該商品第幾天時(shí),當(dāng)天銷售利潤(rùn)最大,最大利潤(rùn)是多少?

3)該商品在銷售過(guò)程中,共有多少天每天銷售利潤(rùn)不低于4800元?請(qǐng)直接寫出結(jié)果.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知OA是⊙O的半徑,AB為⊙O的弦,過(guò)點(diǎn)OOPOA,交AB的延長(zhǎng)線上一點(diǎn)P,OP交⊙O于點(diǎn)D,連接AD,BD,過(guò)點(diǎn)B作⊙O的切線BCOP于點(diǎn)C

(1)求證:∠CBP=∠ADB;

(2)O44,AB2,求線段BP的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】車間有20名工人,某天他們生產(chǎn)的零件個(gè)數(shù)統(tǒng)計(jì)如下表.

車間20名工人某一天生產(chǎn)的零件個(gè)數(shù)統(tǒng)計(jì)表

生產(chǎn)零件的個(gè)數(shù)(個(gè))

9

10

11

12

13

15

16

19

20

工人人數(shù)(人)

1

1

6

4

2

2

2

1

1

1)求這一天20名工人生產(chǎn)零件的平均個(gè)數(shù);

2)為了提高大多數(shù)工人的積極性,管理者準(zhǔn)備實(shí)行“每天定額生產(chǎn),超產(chǎn)有獎(jiǎng)”的措施.如果你是管理者,從平均數(shù)、中位數(shù)、眾數(shù)的角度進(jìn)行分析,你將如何確定這個(gè)“定額”?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,Pm,n)在拋物線y=ax2-4axa0)上,E為拋物線的頂點(diǎn).

1)求點(diǎn)E的坐標(biāo)(用含a的式子表示);

2)若點(diǎn)P在第一象限,線段OP交拋物線的對(duì)稱軸于點(diǎn)C,過(guò)拋物線的頂點(diǎn)Ex軸的平行線DE,過(guò)點(diǎn)Px軸的垂線交DE于點(diǎn)D,連接CD,求證:CDOE;

3)如圖2,當(dāng)a=1,且將圖1中的拋物線向上平移3個(gè)單位,與x軸交于A、B兩點(diǎn),平移后的拋物線的頂點(diǎn)為Q,P是其x軸上方的對(duì)稱軸上的動(dòng)點(diǎn),直線AP交拋物線于另一點(diǎn)D,分別過(guò)QDx軸、y軸的平行線交于點(diǎn)E,且∠EPQ=2APQ,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案