8、當(dāng)x=
-1或3
時(shí),代數(shù)式3-x和-x2+3x的值互為相反數(shù).
分析:兩式互為相反數(shù),它們的和為0,則可列出方程3-x+(-x2+3x)=0,化為一般形式以后,利用因式分解法即可求解.
解答:解:依題意得:3-x+(-x2+3x)=0
即-x2+2x+3=0
∴x2-2x-3=0
解得x=-1或3.
點(diǎn)評(píng):本題考查了一元二次方程的解法.解一元二次方程常用的方法有直接開平方法,配方法,公式法,因式分解法,要根據(jù)方程的特點(diǎn)靈活選用合適的方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

25、已知:兩個(gè)正整數(shù)的和與積相等,求這兩個(gè)正整數(shù).
解:不妨設(shè)這兩個(gè)正整數(shù)為a、b,且a≤b.
由題意,得ab=a+b,(*)
則ab=a+b≤b+b=2b,所以a≤2,
因?yàn)閍為正整數(shù),所以a=1或2,
①當(dāng)a=1時(shí),代入等式(*),得1•b=1+b,b不存在;
②當(dāng)a=2時(shí),代入等式(*),得2•b=2+b,b=2.
所以這兩個(gè)正整數(shù)為2和2.
仔細(xì)閱讀以上材料,根據(jù)閱讀材料的啟示,思考是否存在三個(gè)正整數(shù),它們的和與積相等試說明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:兩個(gè)正整數(shù)的和與積相等,求這兩個(gè)正整數(shù).
解:設(shè)這兩個(gè)正整數(shù)為a、b,且a≤b.
由題意,得ab=a+b,…(*)
則ab=a+b≤b+b=2b,即ab≤2b,所以a≤2.
因?yàn)閍為正整數(shù),所以a=1或2.
①當(dāng)a=1時(shí),代入等式(*),得1•b=1+b,b不存在;
②當(dāng)a=2時(shí),代入等式(*),得2•b=2+b,b=2.
所以這兩個(gè)正整數(shù)為2和2.
仿照以上閱讀材料的解法解答下列問題:
已知:三個(gè)正整數(shù)的和與積相等,求這三個(gè)正整數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知:兩個(gè)正整數(shù)的和與積相等,求這兩個(gè)正整數(shù).
解:設(shè)這兩個(gè)正整數(shù)為a、b,且a≤b.
由題意,得ab=a+b,…(*)
則ab=a+b≤b+b=2b,即ab≤2b,所以a≤2.
因?yàn)閍為正整數(shù),所以a=1或2.
①當(dāng)a=1時(shí),代入等式(*),得1•b=1+b,b不存在;
②當(dāng)a=2時(shí),代入等式(*),得2•b=2+b,b=2.
所以這兩個(gè)正整數(shù)為2和2.
仿照以上閱讀材料的解法解答下列問題:
已知:三個(gè)正整數(shù)的和與積相等,求這三個(gè)正整數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2004年全國中考數(shù)學(xué)試題匯編《不等式與不等式組》(03)(解析版) 題型:解答題

(2004•淮安)已知:兩個(gè)正整數(shù)的和與積相等,求這兩個(gè)正整數(shù).
解:不妨設(shè)這兩個(gè)正整數(shù)為a、b,且a≤b.
由題意,得ab=a+b,(*)
則ab=a+b≤b+b=2b,所以a≤2,
因?yàn)閍為正整數(shù),所以a=1或2,
①當(dāng)a=1時(shí),代入等式(*),得1•b=1+b,b不存在;
②當(dāng)a=2時(shí),代入等式(*),得2•b=2+b,b=2.
所以這兩個(gè)正整數(shù)為2和2.
仔細(xì)閱讀以上材料,根據(jù)閱讀材料的啟示,思考是否存在三個(gè)正整數(shù),它們的和與積相等試說明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2004年江蘇省淮安市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2004•淮安)已知:兩個(gè)正整數(shù)的和與積相等,求這兩個(gè)正整數(shù).
解:不妨設(shè)這兩個(gè)正整數(shù)為a、b,且a≤b.
由題意,得ab=a+b,(*)
則ab=a+b≤b+b=2b,所以a≤2,
因?yàn)閍為正整數(shù),所以a=1或2,
①當(dāng)a=1時(shí),代入等式(*),得1•b=1+b,b不存在;
②當(dāng)a=2時(shí),代入等式(*),得2•b=2+b,b=2.
所以這兩個(gè)正整數(shù)為2和2.
仔細(xì)閱讀以上材料,根據(jù)閱讀材料的啟示,思考是否存在三個(gè)正整數(shù),它們的和與積相等試說明你的理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案