【題目】如圖,直線l過點(diǎn)A(4,0)和點(diǎn)B(0,4),它與二次函數(shù)yax22的圖象交于點(diǎn)P,若AOP的面積為,求二次函數(shù)的表達(dá)式.

【答案】

【解析】

設(shè)l的解析式為ykxb,將(4,0),(0,4)代入,根據(jù)待定系數(shù)法解答;根據(jù)△OAP的面積和P在直線上,可求出P點(diǎn)坐標(biāo),將P點(diǎn)坐標(biāo)代入二次函數(shù)yax22,列方程求出a值即可.

解:如圖,連接OP,設(shè)直線l的解析式為y=kx+b,

∵直線l與兩坐標(biāo)軸分別交于點(diǎn)A4,0),B0,4),代入y=kx+b中得:

,解得k=-1,b=4,
∴直線l的函數(shù)表達(dá)式為yx4,
設(shè)點(diǎn)P的坐標(biāo)為(m4m),
∵△AOP的面積為,

,

解得m=,

∴點(diǎn)P,

P點(diǎn)坐標(biāo)代入二次函數(shù)yax22得:,

解得:,

,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了方便游客觀賞景點(diǎn),某景區(qū)設(shè)計建造了如圖所示的高為6米的觀景臺,且坡面的坡度比為1:1.后來為了方便行人推車(如子女帶老人旅游等),決定降低坡度,新坡面的坡度比為

1)求新坡面的坡角

2)原坡面底部的正前方13米(的長)有一座古建筑,為保護(hù)文物,當(dāng)?shù)匚奈锕芾聿块T規(guī)定,坡面底部至少距古建筑7米,請問新的設(shè)計方案能否通過,試說明理由.(參考數(shù)據(jù):,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,拋物線yax2+bx+ca≠0)的頂點(diǎn)為C(1,4),交x軸于A、B兩點(diǎn),交y軸于點(diǎn)D,其中點(diǎn)B的坐標(biāo)為(3,0)

1)求拋物線的解析式;

2)如圖2,點(diǎn)P為直線BD上方拋物線上一點(diǎn),若,請求出點(diǎn)P的坐標(biāo).

3)如圖3,M為線段AB上的一點(diǎn),過點(diǎn)MMNBD,交線段AD于點(diǎn)N,連接MD,若DNM∽△BMD,請求出點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在平面直角坐標(biāo)系xOy中,RtAOB的直角邊OB,OA分別在x軸上和y軸上,其中OA=2,OB=4,現(xiàn)將RtAOB繞著直角頂點(diǎn)O按逆時針方向旋轉(zhuǎn)90°得到COD,已知一拋物線經(jīng)過C、D、B三點(diǎn).

1)該拋物線的解析式為  ;

2)設(shè)點(diǎn)E是拋物線上位于第一象限的動點(diǎn),過點(diǎn)EEFx軸于點(diǎn)F,并交直線ABN,過點(diǎn)E再作EMAB于點(diǎn)M,求EMN周長的最大值;

3)當(dāng)EMN的周長最大時,在直線EF上是否存在點(diǎn)Q,使得QCD是以CD為直角邊的直角三角形?若存在請求出點(diǎn)Q的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】參照學(xué)習(xí)函數(shù)的過程方法,探究函數(shù)的圖像與性質(zhì),因為,即,所以我們對比函數(shù)來探究列表:

-4

-3

-2

-1

1

2

3

4

1

2

4

-4

-2

-1

2

3

5

-3

-2

0

描點(diǎn):在平面直角坐標(biāo)系中以自變量的取值為橫坐標(biāo),以相應(yīng)的函數(shù)值為縱坐標(biāo),描出相應(yīng)的點(diǎn)如圖所示:

1)請把軸左邊各點(diǎn)和右邊各點(diǎn)分別用一條光滑曲線,順次連接起來;

2)觀察圖象并分析表格,回答下列問題:

①當(dāng)時,的增大而______;(“增大”或“減小”)

的圖象是由的圖象向______平移______個單位而得到的;

③圖象關(guān)于點(diǎn)______中心對稱.(填點(diǎn)的坐標(biāo))

3)函數(shù)與直線交于點(diǎn),,求的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】九(1)班數(shù)學(xué)興趣小組經(jīng)過市場調(diào)查,整理出某種商品在第x1≤x≤90)天的售價與銷售量的相關(guān)信息如下表:

時間x(天)

1≤x50

50≤x≤90

售價(元/件)

x40

90

每天銷量(件)

2002x

已知該商品的進(jìn)價為每件30元,設(shè)銷售該商品的每天利潤為y[

1)求出yx的函數(shù)關(guān)系式;

2)問銷售該商品第幾天時,當(dāng)天銷售利潤最大,最大利潤是多少?

3)該商品在銷售過程中,共有多少天每天銷售利潤不低于4800元?請直接寫出結(jié)果.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的直徑,是圓上一點(diǎn),弦于點(diǎn),且.過點(diǎn)的切線,過點(diǎn)的平行線,兩直線交于點(diǎn),的延長線交的延長線于點(diǎn)

1)求證:相切;

2)連接,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,△ABC與△CDE是等腰直角三角形,直角邊AC、CD在同一條直線上,點(diǎn)M、N分別是斜邊AB、DE的中點(diǎn),點(diǎn)P為AD的中點(diǎn),連接AE、BD.

(1)猜想PM與PN的數(shù)量關(guān)系及位置關(guān)系,請直接寫出結(jié)論;

(2)現(xiàn)將圖①中的△CDE繞著點(diǎn)C順時針旋轉(zhuǎn)α(0°<α<90°),得到圖②,AE與MP、BD分別交于點(diǎn)G、H.請判斷(1)中的結(jié)論是否成立?若成立,請證明;若不成立,請說明理由;

(3)若圖②中的等腰直角三角形變成直角三角形,使BC=kAC,CD=kCE,如圖③,寫出PM與PN的數(shù)量關(guān)系,并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,河流兩岸PQ,MN互相平行,C、D是河岸PQ上間隔50m的兩個電線桿,某人在河岸MN上的A處測得∠DAB30°,然后沿河岸走了100m到達(dá)B處,測得∠CBF70°,求河流的寬度(結(jié)果精確到個位,1.73,sin70°0.94,cos70°0.34,tan70°2.75

查看答案和解析>>

同步練習(xí)冊答案