【題目】如圖,點O在線段AB上,AO2,OB1,OC為射線,且∠BOC60°,動點P以每秒2個單位長度的速度從點O出發(fā),沿射線OC做勻速運動,設運動時間為t秒.當ABP是直角三角形時,t的值為( 。

A. B. C. 1 D. 1

【答案】C

【解析】

根據(jù)題意分三種情況考慮:當∠A=90°;當∠B=90°;當∠APB=90°,根據(jù)ABP為直角三角形,分別求出t的值即可.

解:分三種情況考慮:

當∠A90°,即ABP為直角三角形時,

∵∠BOC>∠A,且∠BOC60°

∴∠A≠90°,故此情況不存在;

當∠B90°,即ABP為直角三角形時,如圖所示:

∵∠BOC60°,

∴∠BPO30°

OP2OB2,

OP2t

t1;

當∠APB90°,即ABP為直角三角形時,過PPDAB,

ODOPcosBOCt,PDOPsinBOCt,

ADAO+OD2+t,BDOBOD1t,即AB3,

RtABP中,根據(jù)勾股定理得:

AP2+BP2AB2,即(2+t2+t2+t2+1t232,

解得:t(負值舍去),

綜上,當t 1t時,ABP是直角三角形.

故選:C

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】為更精準地關(guān)愛留守學生,某學校將留守學生的各種情形分成四種類型:A.由父母一方照看;B.由爺爺奶奶照看;C.由叔姨等近親照看;D.直接寄宿學校.某數(shù)學小組隨機調(diào)查了一個班級,發(fā)現(xiàn)該班留守學生數(shù)量占全班總?cè)藬?shù)的20%,并將調(diào)查結(jié)果制成如下兩幅不完整的統(tǒng)計圖.

1)該班共有   名留守學生,B類型留守學生所在扇形的圓心角的度數(shù)為   ;

2)將條形統(tǒng)計圖補充完整;

3)已知該校共有2400名學生,現(xiàn)學校打算對D類型的留守學生進行手拉手關(guān)愛活動,請你估計該校將有多少名留守學生在此關(guān)愛活動中受益?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,矩形OABC的頂點A(﹣3,0),C0,).將矩形OABC繞點O順時針方向旋轉(zhuǎn),使點A恰好落在OB上的點A1處,則點B的對應點B1的坐標為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,CGAB于點G,∠ABF45°FCD上,BFCG于點E,連接AE,且AEAD

1)若BG2,BC,求EF的長度;

2)求證:CE+BEAB

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】活動1

在一只不透明的口袋中裝有標號為1,2,33個小球,這些球除標號外都相同,充分攪勻,甲、乙、丙三位同學按丙→甲→乙的順序依次從袋中各摸出一個球(不放回),摸到1號球勝出,請你通過畫樹狀圖或列表計算甲勝出的概率.(注:丙→甲→乙表示丙第一個摸球,甲第二個摸球,乙最后一個摸球)

活動2

在一只不透明的口袋中裝有標號為1,23,44個小球,這些球除標號外都相同,充分攪勻,請你對甲、乙、丙三名同學規(guī)定一個摸球順序: ,他們按這個順序從袋中各摸出一個球(不放回),摸到1號球勝出,通過畫樹狀圖或列表求每位同學勝出的概率分別是多少.

猜想:

在一只不透明的口袋中裝有標號為1,2,3,…,為正整數(shù))的個小球,這些球除標號外都相同,充分攪勻,甲、乙、丙三名同學按任意順序從袋中各摸出一個球(不放回),摸到1號球勝出,猜想:直接寫出這三名同學每人勝出的概率之間的大小關(guān)系.

由此你能得到什么活動經(jīng)驗?(寫出一個即可)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某新建火車站站前廣場需要綠化的面積為46000米2,施工隊在綠化了22000米2后,將每天的工作量增加為原來的1.5倍,結(jié)果提前4天完成了該項綠化工程.

(1)該項綠化工程原計劃每天完成多少米2?

(2)該項綠化工程中有一塊長為20米,寬為8米的矩形空地,計劃在其中修建兩塊相同的矩形綠地,它們的面積之和為56米2,兩塊綠地之間及周邊留有寬度相等的人行通道(如圖所示),問人行通道的寬度是多少米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,一次函數(shù)a,b為常數(shù),且)與反比例函數(shù)m為常數(shù),且)的圖象交于點A﹣2,1)、B1,n).

1)求反比例函數(shù)和一次函數(shù)的解析式;

2)連結(jié)OA、OB,求△AOB的面積;

3)直接寫出當時,自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在平面直角坐標系中,點A0,4),B1,m)都在直線y=﹣2x+b上,反比例函數(shù)yx0)的圖象經(jīng)過點B

1)直接寫出mk的值;

2)如圖2,將線段AB向右平移n個單位長度(n≥0),得到對應線段CD,連接ACBD

①在平移過程中,若反比例函數(shù)圖象與線段AB有交點,求n的取值范圍;

②在平移過程中,連接BC,若BCD是直角三角形,請直接寫出所有滿足條件n的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形內(nèi)接于,是對角線。點E的延長線上,且

1)判斷的位置關(guān)系,并說明理由;

2的延長線交于點F,若,,求的長.

查看答案和解析>>

同步練習冊答案