【題目】如圖,在RtABC中,∠ACB90°,以AC為直徑的OAB邊交于點(diǎn)D,過(guò)點(diǎn)DO的切線.交BC于點(diǎn)E

1)求證:BEEC

2)填空:若∠B30°,AC2,則DB   ;

當(dāng)∠B   度時(shí),以O,D,EC為頂點(diǎn)的四邊形是正方形.

【答案】1)詳見(jiàn)解析;(2)①3②45

【解析】

1)證出EC為⊙O的切線;由切線長(zhǎng)定理得出EC=ED,再求得EB=ED,即可得出結(jié)論;

2)①由含30°角的直角三角形的性質(zhì)得出AB,由勾股定理求出BC,再根據(jù)BD=BCcos30°計(jì)算即可;

②由等腰三角形的性質(zhì),得到ODA=∠A=45°,于是DOC=90°,然后根據(jù)有一組鄰邊相等的矩形是正方形,即可得到結(jié)論.

1)證明:連接DO

∵∠ACB=90°AC為直徑,

ECO的切線;

ED也為O的切線,

EC=ED

∵∠EDO=90°,

∴∠BDE+∠ADO=90°

∴∠BDE+∠A=90°

∵∠B+∠A=90°,

∴∠BDE=∠B,

BE=ED,

BE=EC;

2)解:①∵∠ACB=90°,B=30°AC=2,

AB=2AC=4

BC=,

AC為直徑,

∴∠BDC=∠ADC=90°,

BD=BCcos30°=3

故答案為:3

當(dāng)B=45°時(shí),四邊形ODEC是正方形,

理由如下:

∵∠ACB=90°,

∴∠A=45°

OA=OD,

∴∠ADO=45°,

∴∠AOD=90°,

∴∠DOC=90°

∵∠ODE=90°,

四邊形DECO是矩形,

OD=OC

矩形DECO是正方形.

故答案為:45

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩同學(xué)從A地出發(fā),騎自行車在同一條路上行駛到B地,他們離出發(fā)地的距離s(千米)和行駛時(shí)間t(小時(shí))之間的函數(shù)關(guān)系圖象如圖所示,根據(jù)圖中提供的信息,有下列說(shuō)法:

1)他們都行駛了18千米;

2)甲在途中停留了0.5小時(shí);

3)乙比甲晚出發(fā)了0.5小時(shí);

4)相遇后,甲的速度小于乙的速度;

5)甲、乙兩人同時(shí)到達(dá)目的地

其中符合圖象描述的說(shuō)法有(

A. 2個(gè)B. 3個(gè)C. 4個(gè)D. 5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二次函數(shù))的圖象與軸交于兩點(diǎn),與軸相交于點(diǎn).連結(jié)兩點(diǎn)的坐標(biāo)分別為、,且當(dāng)時(shí)二次函數(shù)的函數(shù)值相等.

1)求實(shí)數(shù)的值;

2)若點(diǎn)同時(shí)從點(diǎn)出發(fā),均以每秒1個(gè)單位長(zhǎng)度的速度分別沿邊運(yùn)動(dòng),其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng).當(dāng)運(yùn)動(dòng)時(shí)間為秒時(shí),連結(jié),將沿翻折,點(diǎn)恰好落在邊上的處,求的值及點(diǎn)的坐標(biāo);

3)在(2)的條件下,二次函數(shù)圖象的對(duì)稱軸上是否存在點(diǎn),使得以為項(xiàng)點(diǎn)的三角形與相似?如果存在,請(qǐng)求出點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)yax2+bx+c的圖象如圖,其對(duì)稱軸x=﹣1,給出下列結(jié)果:b24ac;abc0;③2a+b0;ab+c0;⑤3a+c0.其中正確結(jié)論的序號(hào)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將邊長(zhǎng)為2cm的正方形OABC放在平面直角坐標(biāo)系中,O是原點(diǎn),點(diǎn)A的橫坐標(biāo)為1,則點(diǎn)C的坐標(biāo)為( 。

A. ,-1) B. (2,﹣1) C. (1,- D. (﹣1,

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:直線y=x﹣3與x軸、y軸分別交于點(diǎn)A、B,拋物線y=x2+bx+c經(jīng)過(guò)點(diǎn)A、B,且交x軸于點(diǎn)C.

(1)求拋物線的解析式;

(2)點(diǎn)P為拋物線上一點(diǎn),且點(diǎn)P在AB的下方,設(shè)點(diǎn)P的橫坐標(biāo)為m.

試求當(dāng)m為何值時(shí),PAB的面積最大;

當(dāng)PAB的面積最大時(shí),過(guò)點(diǎn)P作x軸的垂線PD,垂足為點(diǎn)D,問(wèn)在直線PD上否存在點(diǎn)Q,使QBC為直角三角形?若存在,直接寫(xiě)出符合條件的Q的坐標(biāo)若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校門(mén)口豎著“前方學(xué)校,減速慢行”的交通指示牌CD,數(shù)學(xué)“綜合與實(shí)踐”小組的同學(xué)將“測(cè)量交通指示牌CD的高度”作為一項(xiàng)課題活動(dòng),他們定好了如下測(cè)量方案:

項(xiàng)目

內(nèi)容

課題

測(cè)量交通指示牌CD的高度

測(cè)量示意圖

測(cè)量步驟

(1)從交通指示牌下的點(diǎn)M處出發(fā)向前走10 米到達(dá)A處;

(2)在點(diǎn)A處用量角儀測(cè)得∠DAM27°;

(3)從點(diǎn)A沿直線MA向前走10米到達(dá)B處;(4)在點(diǎn)B處用量角儀測(cè)得∠CBA18°.

請(qǐng)你幫助該小組同學(xué)根據(jù)上表中的測(cè)量數(shù)據(jù),求出交通指示牌CD的高度.(參考數(shù)據(jù)sin27°≈0.45cos27°≈0.89,tan27°≈0.51,sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】用黑白棋子擺出下列一組圖形,根據(jù)規(guī)律可知.

(1)在第n個(gè)圖中,白棋共有   枚,黑棋共有   枚;

(2)在第幾個(gè)圖形中,白棋共有300枚;

(3)白棋的個(gè)數(shù)能否與黑棋的個(gè)數(shù)相等?若能,求出是第幾個(gè)圖形,若不能,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀與計(jì)算,請(qǐng)閱讀以下材料,并完成相應(yīng)的問(wèn)題.

角平分線分線段成比例定理,如圖1,在△ABC中,AD平分∠BAC,則.下面是這個(gè)定理的部分證明過(guò)程.

證明:如圖2,過(guò)CCEDA.交BA的延長(zhǎng)線于E.…

任務(wù):(1)請(qǐng)按照上面的證明思路,寫(xiě)出該證明的剩余部分;

2)填空:如圖3,已知RtABC中,AB3,BC4,∠ABC90°,AD平分∠BAC,則△ABD的周長(zhǎng)是   

查看答案和解析>>

同步練習(xí)冊(cè)答案