【題目】如圖,ABDE,1=ACB,AC平分∠BAD,

(1)試說明: ADBC.

(2)若∠B=80°,求∠ADE的度數(shù).

【答案】(1)證明見解析;(2)ADE=80°

【解析】

(1)根據(jù)平行線的性質(zhì)與判定,兩直線平行,即∠1=∠BAC,再利用角平分線的性質(zhì),得出∠1=∠DAC,進(jìn)而得出∠DAC=∠ACB,即可得證;
(2)根據(jù)AB∥DE,AD∥BC,得出∠B=∠ADE,進(jìn)而求出∠ADE的度數(shù).

(1)證明:∵AB∥DE(已知),
∴∠1=∠BAC(兩直線平行,同位角相等),
∵AC平分∠BAD(已知),
∴∠BAC=∠DAC,
∴∠1=∠DAC(等量代換),
∵∠1=∠ACB(已知),
∴∠DAC=∠ACB(等量代換),
∴AD∥BC(內(nèi)錯(cuò)角相等,兩直線平行).

(2)證明:∵AB∥DE,AD∥BC,
∴∠B=∠DEC,∠DEC=∠ADE,
∴∠B=∠ADE,
∵∠B=80°,
∴∠ADE=80°.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先化簡,再求值:

(1)2xy (4xy-8x2y2)+2(3xy-5x2y2),其中x,y=-3.

(2)-a2b+(3ab2a2b)-2(2ab2a2b),其中a=1,b=-2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,CA平分∠DCB,∠ADC=∠BAC=90°.

(1)求證:AC2=BCDC;
(2)若BC=5,DC=1,求線段AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,P是給定△ABC邊AB上一動點(diǎn),D是CP的延長線上一點(diǎn),且2DP=PC,連結(jié)DB,動點(diǎn)P從點(diǎn)B出發(fā),沿BA方向勻速運(yùn)動到終點(diǎn)A,則△APC與△DBP面積的差的變化情況是( )

A.始終不變
B.先減小后增大
C.一直變大
D.一直變小

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)不透明的袋中,裝有10個(gè)紅球、2個(gè)黃球、8個(gè)籃球,它們除顏色外都相同.
(1)求從袋中摸出一個(gè)球是紅球的概率;
(2)現(xiàn)從袋中取出若干個(gè)紅球,并放入相同數(shù)量的黃球,攪拌均勻后,使從袋中摸出一個(gè)球是黃球的概率是 ,問取出了多少個(gè)紅球?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將長方形紙片ABCD折疊,使邊DC落在對角線AC上,折痕為CE,且D點(diǎn)落在對角線D處.若AB=3,AD=4,則ED的長為(  )

A. B. 3 C. 1 D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A,B的坐標(biāo)分別為(0,8),(﹣3,0),點(diǎn)P從點(diǎn)A出發(fā),以2單位/秒的速度沿射線AO方向運(yùn)動,同時(shí)點(diǎn)E從點(diǎn)B出發(fā),以1單位/秒的速度沿射線BO方向運(yùn)動,以PE為斜邊構(gòu)造Rt△PEC(字母按逆時(shí)針順序),且EC=2PC,拋物線y=﹣2x2+bx+c經(jīng)過點(diǎn)(0,4),(﹣1,﹣2),設(shè)運(yùn)動時(shí)間為t秒.

(1)求該拋物線的表達(dá)式;
(2)當(dāng)t=2時(shí),求點(diǎn)C的坐標(biāo);
(3)①當(dāng)t<3時(shí),求點(diǎn)C的坐標(biāo)(用含t的代數(shù)式表示);
②在運(yùn)動過程中,若點(diǎn)C恰好落在該拋物線上,請直接寫出所有滿足條件的t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在方格紙中,已知格點(diǎn)ABC和格點(diǎn)O

(1)畫出ABC關(guān)于點(diǎn)O對稱的ABC′;

(2)若以點(diǎn)A、O、CD為頂點(diǎn)的四邊形是平行四邊形,則點(diǎn)D的坐標(biāo)為__.(寫出所有可能的結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O是直線AB上的一點(diǎn),OC為任一射線,OD平分∠BOC,OE平分∠AOC.

(1)指出圖中∠AOD的補(bǔ)角和∠BOE的補(bǔ)角;

(2)若∠BOC=68°,求∠COD和∠EOC的度數(shù);

(3)COD與∠EOC具有怎樣的數(shù)量關(guān)系?

查看答案和解析>>

同步練習(xí)冊答案