【題目】如圖,已知FG⊥AB,CD⊥AB,垂足分別為G,D,∠1=∠2,
求證:∠CED+∠ACB=180°,
請你將小明的證明過程補充完整.
證明:∵FG⊥AB,CD⊥AB,垂足分別為G,D(已知)
∴∠FGB=∠CDB=90°( ).
∴GF∥CD( )
∵GF∥CD(已證)
∴∠2=∠BCD( )
又∵∠1=∠2(已知)
∴∠1=∠BCD( )
∴ ( )
∴∠CED+∠ACB=180°( )
【答案】見解析.
【解析】
根據(jù)同位角相等兩直線平行可得GF∥CD,然后根據(jù)兩直線平行同位角相等得出∠2=∠BCD,根據(jù)已知進一步得出∠1=∠BCD,即可證得DE∥BC,得出∠CED+∠ACB=180°.
證明:∵FG⊥AB,CD⊥AB,垂足分別為G,D(已知)
∴∠FGB=∠CDB=90°(垂直定義).
∴GF∥CD(同位角相等,兩直線平行),
∵GF∥CD(已證),
∴∠2=∠BCD(兩直線平行,同位角相等),
又∵∠1=∠2(已知),
∴∠1=∠BCD(等量代換),
∴DE∥BC(內錯角相等,兩直線平行)
∴∠CED+∠ACB=180°(兩直線平行,同旁內角互補),
故答案為:垂直定義;同位角相等,兩直線平行;兩直線平行,同位角相等;等量代換;DE∥BC;內錯角相等,兩直線平行;兩直線平行,同旁內角互補.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將一根繩子對折以后用線段表示,現(xiàn)從處將繩子剪斷,剪斷后的各段繩子中最長的一段為,若,則這條繩子的原長為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,,點在邊上,點在邊上,且,連接.
(1)當時,求的度數(shù)
(2)當點在(點、除外)邊上運動,試寫出與的數(shù)量關系,并說明理由
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知△ABC在平面直角坐標系中的位置如圖所示,將△ABC向右平移5個單位長度,再向下平移3個單位長度得到△A1B1C1.(圖中每個小方格邊長均為1個單位長度)
(1)在圖中畫出平移后的△A1B1C1;
(2)直接寫出△A1B1C1各頂點的坐標.
A1______,B1______,C1______.
(3)在x軸上找到一點M,當AM+A1M取最小值時,M點的坐標是______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“足球運球”是中考體育必考項目之一.蘭州市某學校為了解今年九年級學生足球運球的掌握情況,隨機抽取部分九年級學生足球運球的測試成績作為一個樣本,按,,,四個等級進行統(tǒng)計,制成了如下不完整的統(tǒng)計圖.(說明:級:8分—10分,級:7分—7.9分,級:6分—6.9分,級:1分—5.9分)
根據(jù)所給信息,解答以下問題:
(1)在扇形統(tǒng)計圖中,對應的扇形的圓心角是_______度;
(2)補全條形統(tǒng)計圖;
(3)所抽取學生的足球運球測試成績的中位數(shù)會落在_______等級;
(4)該校九年級有300名學生,請估計足球運球測試成績達到級的學生有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線AB交x軸于點A(a,0),交y軸于點B(0,b),且a、b滿足.
(1)點A的坐標為 ;點B的坐標為 ;
(2)如圖1,若點C的坐標為(-3,-2),且BE⊥AC于點E,OD⊥OC交BE延長線于D,試求點D的坐標;
(3)如圖2,M、N分別為OA、OB邊上的點,OM=ON,OP⊥AN交AB于點P,過點P 作PG⊥BM,交AN的延長線于點G,請寫出線段AG、OP與PG之間的數(shù)量關系,并證明你的結論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中AB=AC=4,∠C=72°,D是AB中點,點E在AC上,DE⊥AB,則cos A的值為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,P為等邊三角形ABC內的一點,且P到三個頂點A,B,C的距離分別為3,4,5,則△ABC的面積為( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀短文,解決問題
如果一個三角形和一個菱形滿足條件:三角形的一個角與菱形的一個角重合,且菱形的這個角的對角頂點在三角形的這個角的對邊上,則稱這個菱形為該三角形的“親密菱形”.如圖1,菱形AEFD為△ABC的“親密菱形”.
如圖2,在△ABC中,以點A為圓心,以任意長為半徑作弧,交AB、AC于點M、N,再分別以M、N為圓心,以大于MN的長為半徑作弧,兩弧交于點P,作射線AP,交BC于點F,過點F作FD//AC,F(xiàn)E//AB.
(1)求證:四邊形AEFD是△ABC的“親密菱形”;
(2)當AB=6,AC=12,∠BAC=45°時,求菱形AEFD的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com