【題目】如圖,已知邊長(zhǎng)為2的正三角形ABC沿著直線l滾動(dòng).
(1)當(dāng)△ABC滾動(dòng)一周到△A1B1C1的位置,此時(shí)A點(diǎn)運(yùn)動(dòng)的路程為 ;約為 ;(精確到0.1,π=3.14…)
(2)設(shè)△ABC滾動(dòng)240°時(shí),C點(diǎn)的位置為C′,△ABC滾動(dòng)480°時(shí),A點(diǎn)的位置為A′.請(qǐng)你利用三角函數(shù)中正切的兩角和公式tan(α+β)=(tanα+tanβ)÷(1﹣tanαtanβ),求出∠CAC′+∠CAA′的度數(shù).
【答案】(1)8.37758;8.4;(2)∠CAC′+∠CAA′=30°.
【解析】
(1)由圖形可以看出,△ABC滾動(dòng)的軌跡正好為兩個(gè)半徑為2的三分之一的圓周長(zhǎng);
(2)先求出正三角形的高,再利用三角函數(shù)求出tan∠CAC’與tan∠CAA′的值,然后通過(guò)等量代換求出∠CAC′+∠CAA′的度數(shù).
(1)當(dāng)△ABC滾動(dòng)一周到△A1B1C1的位置,此時(shí)A點(diǎn)運(yùn)動(dòng)的路徑為兩個(gè)半徑為2的三分之一的圓周長(zhǎng),
即A點(diǎn)的路程長(zhǎng)為:2××2×3.14×2=8.37758;
約為8.4.
(2)設(shè)△ABC滾動(dòng)240°時(shí),C點(diǎn)的位置為C’,△ABC滾動(dòng)480°時(shí),A點(diǎn)的位置為A′.
∵正△ABC的邊長(zhǎng)為2
∴正△ABC的高為
tan∠CAC′=
tan∠CAA′==
所以:由公式tan(α+β)=(tanα+tanβ)÷(1﹣tanαtanβ),
得:tan(∠CAC′+∠CAA′)
=(tan∠CAC′+tan∠CAA′)÷(1﹣tan∠CAC′tan∠CAA′)
=(+)÷(1﹣×)
=.
所以:∠CAC′+∠CAA′=30°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,直線y=kx+b(k≠0)與拋物線y=ax2﹣4ax+3a的對(duì)稱軸交于點(diǎn)A(m,﹣1),點(diǎn)A關(guān)于x軸的對(duì)稱點(diǎn)恰為拋物線的頂點(diǎn).
(1)求拋物線的對(duì)稱軸及a的值;
(2)橫、縱坐標(biāo)都是整數(shù)的點(diǎn)叫做整點(diǎn).記直線y=kx+b(k≠0)與拋物線圍成的封閉區(qū)域(不含邊界)為W.
①當(dāng)k=1時(shí),直接寫(xiě)出區(qū)域W內(nèi)的整點(diǎn)個(gè)數(shù);
②若區(qū)域W內(nèi)恰有3個(gè)整點(diǎn),結(jié)合函數(shù)圖象,求b的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩校分別有一男一女共4名教師報(bào)名到農(nóng)村中學(xué)支教.
(1)若從甲、乙兩校報(bào)名的教師中分別隨機(jī)選1名,則所選的2名教師性別相同的概率是 .
(2)若從報(bào)名的4名教師中隨機(jī)選2名,用列表或畫(huà)樹(shù)狀圖的方法求出這2名教師來(lái)自同一所學(xué)校的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖的矩形ABCD中,E為AB的中點(diǎn),有一圓過(guò)C、D、E三點(diǎn),且此圓分別與AD、BC相交于P、Q兩點(diǎn).甲、乙兩人想找到此圓的圓心O,其作法如下:
(甲) 作∠DEC的角平分線L,作DE的中垂線,交L于O點(diǎn),則O即為所求;
(乙) 連接PC、QD,兩線段交于一點(diǎn)O,則O即為所求.
對(duì)于甲、乙兩人的作法,下列判斷何者正確?( )
A. 兩人皆正確 B. 兩人皆錯(cuò)誤
C. 甲正確,乙錯(cuò)誤 D. 甲錯(cuò)誤,乙正確
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知⊙O的半徑為2,弦BC的長(zhǎng)為,點(diǎn)A為弦BC所對(duì)優(yōu)弧上任意一點(diǎn)(B,C兩點(diǎn)除外).
(1)求∠BAC的度數(shù);
(2)求△ABC面積的最大值.
(參考數(shù)據(jù): ,,.)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】利用圖象法求方程的解,體現(xiàn)了數(shù)形結(jié)合的方法,它是將方程的解看成兩個(gè)函數(shù)圖象交點(diǎn)的橫坐標(biāo).若關(guān)于x的方程x2+a﹣=0(a>0)只有一個(gè)整數(shù)解,則a的值等于 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx+c經(jīng)過(guò)A(﹣4,0)、B(1,0)、C(0,3)三點(diǎn),直線y=mx+n經(jīng)過(guò)A(﹣4,0)、C(0,3)兩點(diǎn).
(1)寫(xiě)出方程ax2+bx+c=0的解;
(2)若ax2+bx+c>mx+n,寫(xiě)出x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線與軸交于點(diǎn),與軸交于點(diǎn),拋物線經(jīng)過(guò)點(diǎn),.點(diǎn)為軸上一動(dòng)點(diǎn),過(guò)點(diǎn)且垂直于軸的直線分別交直線及拋物線于點(diǎn),.
(1)填空:點(diǎn)的坐標(biāo)為_________,拋物線的解析式為_________;
(2)當(dāng)點(diǎn)在線段上運(yùn)動(dòng)時(shí)(不與點(diǎn),重合),
①當(dāng)為何值時(shí),線段最大值,并求出的最大值;
②求出使為直角三角形時(shí)的值;
(3)若拋物線上有且只有三個(gè)點(diǎn)到直線的距離是,請(qǐng)直接寫(xiě)出此時(shí)由點(diǎn),,,構(gòu)成的四邊形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】濟(jì)南某中學(xué)在參加“創(chuàng)文明城,點(diǎn)贊泉城”書(shū)畫(huà)比賽中,楊老師從全校30個(gè)班中隨機(jī)抽取了4個(gè)班(用A,B,C,D表示),對(duì)征集到的作鼎的數(shù)量進(jìn)行了分析統(tǒng)計(jì),制作了兩幅不完整的統(tǒng)計(jì)圖.
請(qǐng)根據(jù)以上信息,回答下列問(wèn)題:
(l)楊老師采用的調(diào)查方式是 (填“普查”或“抽樣調(diào)查”);
(2)請(qǐng)補(bǔ)充完整條形統(tǒng)計(jì)圖,并計(jì)算扇形統(tǒng)計(jì)圖中C班作品數(shù)量所對(duì)應(yīng)的圓心角度數(shù) .
(3)請(qǐng)估計(jì)全校共征集作品的什數(shù).
(4)如果全枝征集的作品中有5件獲得一等獎(jiǎng),其中有3名作者是男生,2名作者是女生,現(xiàn)要在獲得一樣等獎(jiǎng)的作者中選取兩人參加表彰座談會(huì),請(qǐng)你用列表或樹(shù)狀圖的方法,求恰好選取的兩名學(xué)生性別相同的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com