【題目】如圖,已知邊長(zhǎng)為2的正三角形ABC沿著直線l滾動(dòng).

(1)當(dāng)△ABC滾動(dòng)一周到△A1B1C1的位置,此時(shí)A點(diǎn)運(yùn)動(dòng)的路程為   ;約為  (精確到0.1,π3.14)

(2)設(shè)△ABC滾動(dòng)240°時(shí),C點(diǎn)的位置為C′,△ABC滾動(dòng)480°時(shí),A點(diǎn)的位置為A′.請(qǐng)你利用三角函數(shù)中正切的兩角和公式tan(α+β)(tanα+tanβ)÷(1tanαtanβ),求出∠CAC+CAA′的度數(shù).

【答案】(1)8.37758;8.4;(2)CAC+CAA′=30°.

【解析】

(1)由圖形可以看出,ABC滾動(dòng)的軌跡正好為兩個(gè)半徑為2的三分之一的圓周長(zhǎng);
(2)先求出正三角形的高,再利用三角函數(shù)求出tanCACtanCAA的值,然后通過(guò)等量代換求出∠CAC+∠CAA的度數(shù).

(1)當(dāng)ABC滾動(dòng)一周到A1B1C1的位置,此時(shí)A點(diǎn)運(yùn)動(dòng)的路徑為兩個(gè)半徑為2的三分之一的圓周長(zhǎng),

A點(diǎn)的路程長(zhǎng)為:2××2×3.14×2=8.37758;

約為8.4.

(2)設(shè)ABC滾動(dòng)240°時(shí),C點(diǎn)的位置為C,ABC滾動(dòng)480°時(shí),A點(diǎn)的位置為A

∵正ABC的邊長(zhǎng)為2

∴正ABC的高為

tanCAC

tanCAA

所以:由公式tan(αβ)(tanαtanβ)÷(1﹣tanαtanβ),

得:tan(CAC+∠CAA′)

(tanCACtanCAA′)÷(1﹣tanCAC′tanCAA′)

()÷(1﹣×)

所以:∠CAC+∠CAA=30°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,直線ykx+bk0)與拋物線yax24ax+3a的對(duì)稱軸交于點(diǎn)Am,﹣1),點(diǎn)A關(guān)于x軸的對(duì)稱點(diǎn)恰為拋物線的頂點(diǎn).

1)求拋物線的對(duì)稱軸及a的值;

2)橫、縱坐標(biāo)都是整數(shù)的點(diǎn)叫做整點(diǎn).記直線ykx+bk0)與拋物線圍成的封閉區(qū)域(不含邊界)為W

當(dāng)k1時(shí),直接寫(xiě)出區(qū)域W內(nèi)的整點(diǎn)個(gè)數(shù);

若區(qū)域W內(nèi)恰有3個(gè)整點(diǎn),結(jié)合函數(shù)圖象,求b的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩校分別有一男一女共4名教師報(bào)名到農(nóng)村中學(xué)支教.

(1)若從甲、乙兩校報(bào)名的教師中分別隨機(jī)選1名,則所選的2名教師性別相同的概率是

(2)若從報(bào)名的4名教師中隨機(jī)選2名,用列表或畫(huà)樹(shù)狀圖的方法求出這2名教師來(lái)自同一所學(xué)校的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖的矩形ABCD中,EAB的中點(diǎn),有一圓過(guò)C、DE三點(diǎn),且此圓分別與ADBC相交于P、Q兩點(diǎn).甲、乙兩人想找到此圓的圓心O,其作法如下:

() 作∠DEC的角平分線L,作DE的中垂線,交LO點(diǎn),則O即為所求;

() 連接PCQD,兩線段交于一點(diǎn)O,則O即為所求.

對(duì)于甲、乙兩人的作法,下列判斷何者正確?(  )

A. 兩人皆正確 B. 兩人皆錯(cuò)誤

C. 甲正確,乙錯(cuò)誤 D. 甲錯(cuò)誤,乙正確

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知O的半徑為2,弦BC的長(zhǎng)為,點(diǎn)A為弦BC所對(duì)優(yōu)弧上任意一點(diǎn)(B,C兩點(diǎn)除外).

1)求BAC的度數(shù);

2)求ABC面積的最大值.

(參考數(shù)據(jù): ,.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】利用圖象法求方程的解,體現(xiàn)了數(shù)形結(jié)合的方法,它是將方程的解看成兩個(gè)函數(shù)圖象交點(diǎn)的橫坐標(biāo).若關(guān)于x的方程x2+a﹣=0(a0)只有一個(gè)整數(shù)解,則a的值等于

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=ax2+bx+c經(jīng)過(guò)A(4,0)、B(1,0)、C(0,3)三點(diǎn),直線y=mx+n經(jīng)過(guò)A(4,0)、C(0,3)兩點(diǎn).

(1)寫(xiě)出方程ax2+bx+c=0的解;

(2)若ax2+bx+c>mx+n,寫(xiě)出x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線軸交于點(diǎn),與軸交于點(diǎn),拋物線經(jīng)過(guò)點(diǎn),.點(diǎn)軸上一動(dòng)點(diǎn),過(guò)點(diǎn)且垂直于軸的直線分別交直線及拋物線于點(diǎn),.

1)填空:點(diǎn)的坐標(biāo)為_________,拋物線的解析式為_________

2)當(dāng)點(diǎn)在線段上運(yùn)動(dòng)時(shí)(不與點(diǎn),重合),

①當(dāng)為何值時(shí),線段最大值,并求出的最大值;

②求出使為直角三角形時(shí)的值;

3)若拋物線上有且只有三個(gè)點(diǎn)到直線的距離是,請(qǐng)直接寫(xiě)出此時(shí)由點(diǎn),,,構(gòu)成的四邊形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】濟(jì)南某中學(xué)在參加“創(chuàng)文明城,點(diǎn)贊泉城”書(shū)畫(huà)比賽中,楊老師從全校30個(gè)班中隨機(jī)抽取了4個(gè)班(用A,B,C,D表示),對(duì)征集到的作鼎的數(shù)量進(jìn)行了分析統(tǒng)計(jì),制作了兩幅不完整的統(tǒng)計(jì)圖.

請(qǐng)根據(jù)以上信息,回答下列問(wèn)題:

(l)楊老師采用的調(diào)查方式是   (填“普查”或“抽樣調(diào)查”);

(2)請(qǐng)補(bǔ)充完整條形統(tǒng)計(jì)圖,并計(jì)算扇形統(tǒng)計(jì)圖中C班作品數(shù)量所對(duì)應(yīng)的圓心角度數(shù)   

(3)請(qǐng)估計(jì)全校共征集作品的什數(shù).

(4)如果全枝征集的作品中有5件獲得一等獎(jiǎng),其中有3名作者是男生,2名作者是女生,現(xiàn)要在獲得一樣等獎(jiǎng)的作者中選取兩人參加表彰座談會(huì),請(qǐng)你用列表或樹(shù)狀圖的方法,求恰好選取的兩名學(xué)生性別相同的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案