【題目】如圖,在△ABC中,∠ABC與∠ACB的平分線交與點(diǎn)O, 過(guò)點(diǎn)O作MN∥BC,若AB=6,AC=9,則△AMN的周長(zhǎng)為_____________。
【答案】15
【解析】先根據(jù)角平分線的性質(zhì)和平行線判斷出OM=BM、ON=CN,也就得到三角形的周長(zhǎng)就等于AB與AC的長(zhǎng)度之和.
解:如圖,
∵OB、OC分別是∠ABC與∠ACB的平分線,
∴∠1=∠5,∠3=∠6,
又∵M(jìn)N∥BC,∴∠2=∠5,∠6=∠4,
∴BM=MO,NO=CN,
∴△AMN的周長(zhǎng)=AM+AN+MN=MA+AN+MO+ON=AB+AC,
又∵AB=6,AC=9,
∴△AMN的周長(zhǎng)=6+9=15.
故答案為:15.
“點(diǎn)睛”本題考查了等腰三角形的性質(zhì);解答此題的關(guān)鍵是熟知平行線的性質(zhì),等腰三角形的性質(zhì)及角平分線的性質(zhì)及利用線段的等量代換.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,直線交y軸于點(diǎn)A,交x軸于點(diǎn)B,以線段AB為邊作菱形ABCD(點(diǎn)C、D在第一象限),且點(diǎn)D的縱坐標(biāo)為9.
(1)求點(diǎn)A、點(diǎn)B的坐標(biāo);
(2)求直線DC的解析式;
(3)除點(diǎn)C外,在平面直角坐標(biāo)系xOy中是否還存在點(diǎn)P,使點(diǎn)A、B、D、P組成的四邊形是平行四邊形?若存在,請(qǐng)直接寫(xiě)出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若a是最大的負(fù)整數(shù),b是絕對(duì)值最小的有理數(shù),c是倒數(shù)等于它本身的自然數(shù),則a2017+2018b+c2019的值為( )
A. 2017 B. 2018 C. 2019 D. 0
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校在開(kāi)展讀書(shū)交流活動(dòng)中全體師生積極捐書(shū).為了解所捐書(shū)籍的種類,對(duì)部分書(shū)籍進(jìn)行了抽樣調(diào)查,李老師根據(jù)調(diào)查數(shù)據(jù)繪制了如圖所示不完整統(tǒng)計(jì)圖.請(qǐng)根據(jù)統(tǒng)計(jì)圖回答下面問(wèn)題:
(1)本次抽樣調(diào)查的書(shū)籍有多少本?請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;
(2)求出圖1中表示文學(xué)類書(shū)籍的扇形圓心角度數(shù);
(3)本次活動(dòng)師生共捐書(shū)1200本,請(qǐng)估計(jì)有多少本科普類書(shū)籍?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列方程中沒(méi)有實(shí)數(shù)根的是( )
A. x2+x+2=0 B. x2+3x+2=0 C. 2015x2+11x﹣20=0 D. x2﹣x﹣1=0
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題背景
已知在△ABC中,AB邊上的動(dòng)點(diǎn)D由A向B運(yùn)動(dòng)(與A、B不重合),點(diǎn)E與點(diǎn)D同時(shí)出發(fā),由點(diǎn)C沿BC的延長(zhǎng)線方向運(yùn)動(dòng)(E不與C重合),連接DE交AC于點(diǎn)F,點(diǎn)H是線段AF上一點(diǎn).
(1)初步嘗試
如圖1,若△ABC是等邊三角形,DH⊥AC,且點(diǎn)D,E的運(yùn)動(dòng)速度相等.求證:HF=AH+CF.
小王同學(xué)發(fā)現(xiàn)可以由以下兩種思路解決問(wèn)題:
思路一:過(guò)點(diǎn)D作DG∥BC,交AC于點(diǎn)G,先證GH=AH,再證GF=CF,從而證得結(jié)論成立;
思路二:過(guò)點(diǎn)E作EM⊥AC,交AC的延長(zhǎng)線于點(diǎn)M,先證CM=AH,再證HF=MF,從而證得結(jié)論成立.
請(qǐng)你任選一種思路,完整地書(shū)寫(xiě)本小題的證明過(guò)程(如用兩種方法作答,則以第一種方法評(píng)分);
(2)類比探究
如圖2,若在△ABC中,∠ABC=90°,∠ADH=∠BAC=30°,且點(diǎn)D,E的運(yùn)動(dòng)速度之比是:1,求的值;
(3)延伸拓展
如圖3,若在△ABC中,AB=AC,∠ADH=∠BAC=36°,記=m,且點(diǎn)D,E的運(yùn)動(dòng)速度相等,試用含m的代數(shù)式表示(直接寫(xiě)出結(jié)果,不必寫(xiě)解答過(guò)程).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某水庫(kù)的水位在5小時(shí)內(nèi)持續(xù)上漲,初始的水位高度為6米,水位以每小時(shí)0.3米的速度勻速上升,則水庫(kù)的水位高度y米與時(shí)間x小時(shí)(0≤x≤5)的函數(shù)關(guān)系式為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)正數(shù)的兩個(gè)平方根分別是2a﹣1與﹣a+2,則a的值為( )
A.﹣1
B.1
C.2
D.﹣2
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com