【題目】概念學習
規(guī)定:如果一個三角形的三個角分別等于另一個三角形的三個角,那么稱這兩個三角形互為“等角三角形”.
從三角形(不是等腰三角形)一個頂點引出一條射線與對邊相交,頂點與交點之間的線段把這個三角形分割成兩個小三角形,如果分得的兩個小三角形中一個為等腰三角形,另一個與原來三角形是“等角三角形”,我們把這條線段叫做這個三角形的“等角分割線”.
理解概念
(1)如圖1,在Rt△ABC中,∠ACB=90°,CD⊥AB,請寫出圖中兩對“等角三角形”.
概念應用
(2)如圖2,在△ABC中,CD為角平分線,∠A=40°,∠B=60°.求證:CD為△ABC的等角分割線.
(3)在△ABC中,∠A=42°,CD是△ABC的等角分割線,直接寫出∠ACB的度數(shù).
【答案】(1)△ABC與△ACD,△ABC與△BCD,△ACD與△BCD是“等角三角形”;(2)見解析;(3)∠ACB的度數(shù)為111°或84°或106°或92°
【解析】
(1)根據(jù)題中給出的“等角三角形”的定義即可解答;
(2)通過三角形內角和定理求出∠ACB為80°,然后再由角平分線的定義可得到∠ACD=∠DCB=∠ACB=40°,最后通過 “等角分割線”的定義進行證明;
(3)需分情況討論,當△ACD是等腰三角形時DA=DC或DA=AC,當△BCD是等腰三角形時DB=BC或DC=BD,然后根據(jù)等腰三角形的性質和三角形的內角和定理進行求解.
解:(1)△ABC與△ACD,△ABC與△BCD,△ACD與△BCD是“等角三角形”;
(2)∵在△ABC中,∠A=40°,∠B=60°
∴∠ACB=180°﹣∠A﹣∠B=80°
∵CD為角平分線,
∴∠ACD=∠DCB=∠ACB=40°,
∴∠ACD=∠A,∠DCB=∠A,
∴CD=DA,
∵在△DBC中,∠DCB=40°,∠B=60°,
∴∠BDC=180°﹣∠DCB﹣∠B=80°,
∴∠BDC=∠ACB,
∵CD=DA,∠BDC=∠ACB,∠DCB=∠A,
∠B=∠B,
∴CD為△ABC的等角分割線;
(3)當△ACD是等腰三角形,DA=DC時,∠ACD=∠A=42°,
∴∠ACB=∠BDC=42°+42°=84°,
當△ACD是等腰三角形,DA=AC時,∠ACD=∠ADC=69°,
∠BCD=∠A=42°,
∴∠ACB=69°+42°=111°,
當△BCD是等腰三角形,DC=BD時,∠ACD=∠BCD=∠B=46°,
∴∠ACB=92°,
當△BCD是等腰三角形,DB=BC時,∠BDC=∠BCD,
設∠BDC=∠BCD=x,
則∠B=180°﹣2x,
則∠ACD=∠B=180°﹣2x,
由題意得,180°﹣2x+42°=x,
解得,x=74°,
∴∠ACD=180°﹣2x=32°,
∴∠ACB=106°,
∴∠ACB的度數(shù)為111°或84°或106°或92°.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB∥CD,∠ABK的角平分線BE的反向延長線和∠DCK的角平分線CF的反向延長線交于點H,∠K﹣∠H=27°,則∠K=( )
A. 76° B. 78° C. 80° D. 82°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AM∥BN,∠A=60°.點P是射線AM上一動點(與點A不重合),BC、BD分別平分∠ABP和∠PBN,分別交射線AM于點C,D.
(1)求∠CBD的度數(shù);
(2)當點P運動時,∠APB與∠ADB之間的數(shù)量關系是否隨之發(fā)生變化?若不變化,請寫出它們之間的關系,并說明理由;若變化,請寫出變化規(guī)律.
(3)當點P運動到使∠ACB=∠ABD時,直接寫出∠ABC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學九年級開展“社會主義核心價值觀”演講比賽活動,九(1)班、九(2)班根據(jù)初賽成績各選出5名選手參加復賽,兩個班各選出5名選手的復賽成績(滿分100分)如圖所示.
根據(jù)圖中數(shù)據(jù)解決下列問題:
(1)九(1)班復賽成績的眾數(shù)是 分,九(2)班復賽成績的中位數(shù)是 分;
(2)請你求出九(1)班和九(2)班復賽的平均成績和方差,并說明哪個班的成績更穩(wěn)定.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩人進行1500米比賽,在比賽時,兩人所跑的路程y(米)與所用的時間x(分)間的函數(shù)關系如圖所示,解答下列問題:
(1)求甲的速度等于多少米/分;
(2)當乙到終點時,甲距離終點有多遠;
(3)乙在距終點多遠處追上了甲.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)計算:(﹣2)﹣1﹣|﹣|+(﹣1)0+cos45°.
(2)已知m2﹣5m﹣14=0,求(m﹣1)(2m﹣1)﹣(m+1)2+1的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知A,B兩點在數(shù)軸上,點A在原點O的左邊,表示的數(shù)為﹣10,點B在原點的右邊,且BO=3AO.點M以每秒3個單位長度的速度從點A出發(fā)向右運動.點N以每秒2個單位長度的速度從點O出發(fā)向右運動(點M,點N同時出發(fā)).
(1)數(shù)軸上點B對應的數(shù)是 ,點B到點A的距離是 ;
(2)經過幾秒,原點O是線段MN的中點?
(3)經過幾秒,點M,N分別到點B的距離相等?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為預防傳染病,某校定期對教室進行“藥熏消毒”.已知藥物燃燒階段,室內每立方米空氣中的含藥量 與藥物在空氣中的持續(xù)時間成正比例;燃燒后,與成反比例(如圖所示).現(xiàn)測得藥物分鐘燃完,此時教室內每立方米空氣含藥量為.根據(jù)以上信息解答下列問題:
(1)分別求出藥物燃燒時及燃燒后 關于的函數(shù)表達式.
(2)當每立方米空氣中的含藥量低于 時,對人體方能無毒害作用,那么從消毒開始,在哪個時段消毒人員不能停留在教室里?
(3)當室內空氣中的含藥量每立方米不低于 的持續(xù)時間超過分鐘,才能有效殺滅某種傳染病毒.試判斷此次消毒是否有效,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com