【題目】如圖,在菱形ABCD中,AB=2,∠ABC=60°,對(duì)角線AC、BD相交于點(diǎn)O,將對(duì)角線AC所在的直線繞點(diǎn)O順時(shí)針旋轉(zhuǎn)角α(0°<α<90°)后得直線l,直線l與AD、BC兩邊分別相交于點(diǎn)E和點(diǎn)F.
(1)求證:△AOE≌△COF;
(2)當(dāng)α=30°時(shí),求線段EF的長度.
【答案】
(1)解:∵四邊形ABCD是菱形,
∴AD∥BC,AO=OC,
∴ ,
∴AE=CF,OE=OF,
在△AOE和△COF中,
∴△AOE≌△COF
(2)解:當(dāng)α=30°時(shí),即∠AOE=30°,
∵四邊形ABCD是菱形,∠ABC=60°,
∴∠OAD=60°,
∴∠AEO=90°,
在Rt△AOB中,
sin∠ABO= = = ,
∴AO=1,
在Rt△AEO中,
cos∠AOE=cos30°= = ,
∴OE= ,
∴EF=2OE= .
【解析】(1)首先證明AE=CF,OE=OF,結(jié)合AO=CO,利用SSS證明△AOE≌△COF;(2)首先畫出α=30°時(shí)的圖形,根據(jù)菱形的性質(zhì)得到EF⊥AD,解三角形即可求出OE的長,進(jìn)而得到EF的長.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解菱形的性質(zhì)的相關(guān)知識(shí),掌握菱形的四條邊都相等;菱形的對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角;菱形被兩條對(duì)角線分成四個(gè)全等的直角三角形;菱形的面積等于兩條對(duì)角線長的積的一半,以及對(duì)旋轉(zhuǎn)的性質(zhì)的理解,了解①旋轉(zhuǎn)后對(duì)應(yīng)的線段長短不變,旋轉(zhuǎn)角度大小不變;②旋轉(zhuǎn)后對(duì)應(yīng)的點(diǎn)到旋轉(zhuǎn)到旋轉(zhuǎn)中心的距離不變;③旋轉(zhuǎn)后物體或圖形不變,只是位置變了.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知雙曲線y= ,經(jīng)過點(diǎn)D(6,1),點(diǎn)C是雙曲線第三象限上的動(dòng)點(diǎn),過C作CA⊥x軸,過D作DB⊥y軸,垂足分別為A、B,連接AB,BC.
(1)求k的值;
(2)若△BCD的面積為12,求直線CD的表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解答題
(1)如圖1,在△ABC中,AD是中線,分別過點(diǎn)B、C作AD及其延長線的垂線BE、CF,垂足分別為點(diǎn)E、F.求證:BE=CF.
(2)如圖2,在△ABC中,AB=2,AC=1,以AB為直徑的圓與AC相切,與邊BC交于點(diǎn)D,求AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,邊長為1的正方形ABCD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)45°后得到正方形AB1C1D1 , 邊B1C1與CD交于點(diǎn)O,則四邊形AB1OD的面積是( )
A.
B.
C.
D. ﹣1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,BC=4,以點(diǎn)A為圓心,2為半徑的⊙A與BC相切于點(diǎn)D,交AB于點(diǎn)E,交AC于點(diǎn)F,點(diǎn)P是⊙A上的一點(diǎn),且∠EPF=45°,則圖中陰影部分的面積為( )
A.4﹣π
B.4﹣2π
C.8+π
D.8﹣2π
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校課題研究小組對(duì)本校九年級(jí)全體同學(xué)體育測(cè)試情況進(jìn)行調(diào)查,他們隨即抽查部分同學(xué)體育測(cè)試成績(由高到低分A、B、C、D四個(gè)等級(jí)),根據(jù)調(diào)查的數(shù)據(jù)繪制成如下的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖.
請(qǐng)根據(jù)以上不完整的統(tǒng)計(jì)圖提供的信息,解答下列問題:
(1)該課題研究小組共抽查了名同學(xué)的體育測(cè)試成績,扇形統(tǒng)計(jì)圖中B級(jí)所占的百分比b= , D級(jí)所在小扇形的圓心角的大小為;
(2)請(qǐng)直接補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若該校九年級(jí)共有600名同學(xué),請(qǐng)估計(jì)該校九年級(jí)同學(xué)體育測(cè)試達(dá)標(biāo)(測(cè)試成績C級(jí)以上,含C級(jí))的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如表記錄了一名球員在罰球線上投籃的結(jié)果.那么,這名球員投籃一次,投中的概率約為(精確到0.1).
投籃次數(shù)(n) | 50 | 100 | 150 | 200 | 250 | 300 | 500 |
投中次數(shù)(m) | 28 | 60 | 78 | 104 | 123 | 152 | 251 |
投中頻率(m/n) | 0.56 | 0.60 | 0.52 | 0.52 | 0.49 | 0.51 | 0.50 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點(diǎn),向斜邊作垂線,畫出一個(gè)新的等腰Rt△,如此繼續(xù)下去,直到所畫直角三角形的斜邊與△ABC的BC邊在同一直線上時(shí)為止,此時(shí),這個(gè)直角三角形的斜邊長為( )
A.
B.
C.
D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com