【題目】在矩形ABCD中,AB=a,AD=b,點M為BC邊上一動點(點M與點B、C不重合),連接AM,過點M作MN⊥AM,垂足為M,MN交CD或CD的延長線于點N.
(1)求證:△CMN∽△BAM;
(2)設(shè)BM=x,CN=y,求y關(guān)于x的函數(shù)解析式.當(dāng)x取何值時,y有最大值,并求出y的最大值;
(3)當(dāng)點M在BC上運動時,求使得下列兩個條件都成立的b的取值范圍:①點N始終在線段CD上,②點M在某一位置時,點N恰好與點D重合.
【答案】(1)證明見試題解析;(2),當(dāng)x=時,y取最大值,為;(3)b=2a.
【解析】
試題分析:(1)由矩形的性質(zhì)可得∠B=∠C=90°,要證△CMN∽△BAM,只需證∠BAM=∠CMN即可;
(2)由△CMN∽△BAM即可得到y(tǒng)與x的函數(shù)解析式,然后只需運用配方法就可求出y的最大值;
(3)由點M在BC上運動(點M與點B、C不重合),可得0<x<b,要滿足條件①,應(yīng)保證當(dāng)0<x<b時,y≤a恒成立,要滿足條件②,需存在一個x,使得y=a,綜合條件①和②,當(dāng)0<x<b時y最大值應(yīng)為a,然后結(jié)合(2)中的結(jié)論,就可解決問題.
試題解析:(1)∵四邊形ABCD是矩形,∴∠B=∠C=90°,∴∠BAM+∠AMB=90°.∵MN⊥AM,即∠AMN=90°,∴∠CMN+∠AMB=90°,∴∠BAM=∠CMN,∴△CMN∽△BAM;
(2)∵△CMN∽△BAM,∴.∵BM=x,CN=y,AB=a,BC=AD=b,∴,∴=.∵<0,∴當(dāng)x=時,y取最大值,最大值為;
(3)由題可知:當(dāng)0<x<b時,y的最大值為a,即=a,解得:b=2a.∴要同時滿足兩個條件,b的值為2a.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】廣州市某中學(xué)開展主題為“我愛閱讀”的專題調(diào)查活動,了解學(xué)校1200名學(xué)生一年內(nèi)閱讀書籍的數(shù)量,隨機抽取部分學(xué)生進行統(tǒng)計,繪制成如下尚未完成的頻數(shù)分布表和頻數(shù)分布直方圖.請根據(jù)圖表,解答下面的問題:
分組 | 頻數(shù) | 頻率 |
0≤x<5 | 4 | 0.08 |
5≤x<10 | 14 | 0.28 |
10≤x<15 | 16 | a |
15≤x<20 | b | c |
20≤x<25 | 10 | 0.2 |
合計 | d | 1.00 |
(1)a= , b= , c= , d= .
(2)補全頻數(shù)分布直方圖.
(3)根據(jù)該樣本,估計該校學(xué)生閱讀書籍?dāng)?shù)量在15本或以上的人數(shù).
(4)如果閱讀書籍?dāng)?shù)量在10本或以上的人數(shù)占總?cè)藬?shù)的70%以上,那么該校能評為“書香校園”,請根據(jù)上述數(shù)據(jù)分析該校是否能獲得此榮譽,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列運算正確的是( )
A.﹣2x2y3xy2=﹣6x2y2
B.(﹣x﹣2y)(x+2y)=x2﹣4y2
C.6x3y2÷2x2y=3xy
D.(4x3y2)2=16x9y4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A從原點出發(fā)沿數(shù)軸向左運動,同時,點B也從原點出發(fā)沿數(shù)軸向右運動,4秒后,兩點相距16個單位長度.已知點B的速度是點A的速度的3倍(速度單位:單位長度/秒).
(1)求出點A、點B運動的速度,并在數(shù)軸上標(biāo)出A、B兩點從原點出發(fā)運動4秒時的位置;
(2)若A、B兩點從(1)中的位置開始,仍以原來的速度同時沿數(shù)軸向左運動,再過幾秒時,原點恰好處在AB的中點?
(3)若A、B兩點從(1)中的位置開始,仍以原來的速度同時沿數(shù)軸向左運動時,另一點C同時從原點O位置出發(fā)向B點運動,且C的速度是點A的速度的一半;當(dāng)點C運動幾秒時,C為AB的中點?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一條公路的轉(zhuǎn)彎處是一段圓。).
(1)用直尺和圓規(guī)作出所在圓的圓心O;(要求保留作圖痕跡,不寫作法)
(2)若的中點C到弦AB的距離為20m,AB=80m,求所在圓的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為4的正方形ABCD中,請畫出以A為一個頂點,另外兩個頂點在正方形ABCD的邊上,且含邊長為3的所有大小不同的等腰三角形.(要求:只要畫出示意圖,并在所畫等腰三角形長為3的邊上標(biāo)注數(shù)字3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀發(fā)現(xiàn):如圖①,在△ABC中,∠ACB=2∠B,∠ACB=90°,AD為∠BAC的平分線,且交BC于D,我們發(fā)現(xiàn)在AB上截取AE=AC,連結(jié)DE,可得AB=AC+CD(不需證明).
(1)探究:如圖②,當(dāng)∠ACB≠90°時,其他條件不變,線段AB、AC、CD又有怎樣的數(shù)量關(guān)系,寫出結(jié)果,并證明;
(2)拓展:如圖③,當(dāng)∠ACB=2∠B,∠ACB≠90°時,AD為△ABC的外角∠CAF的平分線,且交BC的延長線于點D,則線段AB、AC、CD又有怎樣的數(shù)量關(guān)系?寫出你的猜想,不需證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若∠α與∠β的兩邊分別平行,且∠α =(x+10)°,∠β =(2x-25)°,則∠α的度數(shù)為( )
A.45° B.75° C.45°或75° D.45°或55°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊三角形ABC中,BC=6cm.射線AG∥BC,點E從點A出發(fā)沿射線AG以1cm/s的速度運動,同時點F從點B出發(fā)沿射線BC以2cm/s的速度運動,設(shè)運動時間為t(s).
(1)連接EF,當(dāng)EF經(jīng)過AC邊的中點D時,求證:△ADE≌△CDF;
(2)填空: ①當(dāng)t為s時,四邊形ACFE是菱形;
②當(dāng)t為s時,以A、F、C、E為頂點的四邊形是直角梯形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com