精英家教網 > 初中數學 > 題目詳情

【題目】如圖,已知點 A 、B分別在反比例函數 的圖象上,且OA ⊥OB ,則 的值為( )

A.
B.2
C.
D.4

【答案】B
【解析】如下圖:

過點A作AM⊥y軸于點M,過點B作AN⊥y軸于點N,
∴∠AMO=∠BNO=90°,
又∵∠AOM+∠MAO=90°,
且∠AOM+∠BON=180°-90°=90°,
∴∠MAO=∠BON,
AOM和OBN中,

AOMOBN,
又∵點 A 、B分別在反比例函數(x>0)和( x > 0 )的圖象上,
∴SAOM:SBON=1:4,
∴AO:BO=1:2,
=2.
故答案為:B.

根據題意作出輔助線,根據相似三角形的判定定理得出AOMOBN,再由反比例函數系數k的幾何意義得到SAOM:SBON=1:4,進而得出=2.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】已知如圖:ADBC,E、F分別在DCAB延長線上.DCB=DAB,AEEF,DEA=30°.

(1)求證:DC//AB.

(2)求AFE的大小

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】一個口袋中放有290個涂有紅、黑、白三種顏色的質地相同的小球.若紅球個數是黑球個數的2倍多40個.從袋中任取一個球是白球的概率是

(1)求袋中紅球的個數;

(2)求從袋中任取一個球是黑球的概率.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,點A1,A2,A3,…分別在x軸上,點B1,B2B3,…分別在直線yx上,△OA1B1,△B1A1A2,△B1B2A2,△B2A2A3,△B2B3A3…,都是等腰直角三角形,如果OA11,則點A2019的坐標為_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】【探究證明】某班數學課題學習小組對矩形內兩條互相垂直的線段與矩形兩鄰邊的數量關系進行探究,提出下列問題,請你給出證明.
(1)某班數學課題學習小組對矩形內兩條互相垂直的線段與矩形兩鄰邊的數量關系進行探究,提出下列問題,請你給出證明.
如圖1,矩形ABCD中,EF⊥GH,EF分別交AB,CD于點E,F,GH分別交AD,BC于點G,H.求證: = ;

(2)【結論應用】如圖2,在滿足(1)的條件下,又AM⊥BN,點M,N分別在邊BC,CD上,若 = ,則 的值為;

(3)【聯系拓展】如圖3,四邊形ABCD中,∠ABC=90°,AB=AD=10,BC=CD=5,AM⊥DN,點M,N分別在邊BC,AB上,求 的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖是一個長方體紙盒的平面展開圖,已知紙盒中相對兩個面上的數互為相反數.

填空: , ;

先化簡, 再求值:

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,直線yx+3x軸交于點A,與y軸交于點B,點C與點A關于y軸對稱.

1)求直線BC的函數表達式;

2)設點Mx軸上的一個動點,過點My軸的平行線,交直線AB于點P,交直線BC于點Q,連接BM

①若∠MBC90°,求點P的坐標;

②若△PQB的面積為,請直接寫出點M的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】問題解決:如圖1,在平面直角坐標系xOy中,一次函數x軸交于點A,與y軸交于點B,以AB為腰在第二象限作等腰直角,點A、B的坐標分別為A______、B______

中點C的坐標.小明同學為了解決這個問題,提出了以下想法:過點Cx軸作垂線交x軸于點請你借助小明的思路,求出點C的坐標;

類比探究:數學老師表揚了小明同學的方法,然后提出了一個新的問題,如圖2,在平面直角坐標系xOy中,點A坐標,點B坐標,過點Bx軸垂線l,點Pl上一動點,點D是在一次函數圖象上一動點,若是以點D為直角頂點的等腰直角三角形,請直接寫出點D與點P的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】完成下面的證明:

如圖,FG//CD,∠1=3,∠B=50°,求∠BDE的度數.

解:∵FG//CD (已知)

∴∠2=_________

又∵∠1=3

∴∠3=_________

BC//__________

∴∠B+________=180°

又∵∠B=50°

∴∠BDE=130°

查看答案和解析>>

同步練習冊答案