精英家教網(wǎng)如圖,已知直線AB和CD相交于O點,∠COE是直角,OF平分∠AOE,∠COF=34°,則∠BOD的大小為
 
分析:根據(jù)直角的定義可得∠COE=90°,然后求出∠EOF,再根據(jù)角平分線的定義求出∠AOF,然后根據(jù)∠AOC=∠AOF-∠COF求出∠AOC,再根據(jù)對頂角相等解答.
解答:解:∵∠COE是直角,
∴∠COE=90°,
∴∠EOF=∠COE-∠COF=90°-34°=56°,
∵OF平分∠AOE,
∴∠AOF=∠COE=56°,
∴∠AOC=∠AOF-∠COF=56°-34°=22°,
∴∠BOD=∠AOC=22°.
故答案為:22°.
點評:本題考查了對頂角相等的性質,角平分線的定義,是基礎題,熟記概念與性質并準確識圖,理清圖中各角度之間的關系是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知直線AB和CD相交于O點,∠DOE是直角,OF平分∠AOE,∠BOD=22°,求∠COF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•奉賢區(qū)二模)如圖,已知直線AB和CD相交于點O,OE⊥AB,∠AOD=128°,則∠COE的度數(shù)是
38
38
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(1)已知一個角的余角是這個角的補角的
14
,求出這個角以及這個角的余角和補角.
(2)如圖,已知直線AB和CD相交于O點,CO⊥OE,OF 平分∠AOE,∠COF=26°,求∠BOD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知直線AB和直線CD被直線GH所截,交點分別為E、F點,且AB∥CD.
(1)若ME是∠AEF的平分線,F(xiàn)N是∠EFD的平分線,則EM與FN平行嗎?若平行,試說明理由.
(2)若EK是∠BEF的平分線,則EK和FN垂直嗎?說明理由.

查看答案和解析>>

同步練習冊答案