如圖:已知在△ABC中,AB=AC,D為BC邊的中點,過點D作DE⊥AB,DF⊥AC,垂足分別為E,F(xiàn).
(1)求證:DE=DF;
(2)若∠A=60°,BE=1,求△ABC的周長.
(1)證明:∵DE⊥AB,DF⊥AC,
∴∠BED=∠CFD=90°,
∵AB=AC,
∴∠B=∠C(等邊對等角).
∵D是BC的中點,
∴BD=CD.
在△BED和△CFD中,
∠BED=∠CFD
∠B=∠C
BD=CD
,
∴△BED≌△CFD(AAS).
∴DE=DF

(2)∵AB=AC,∠A=60°,
∴△ABC為等邊三角形.
∴∠B=60°,
∵∠BED=90°,
∴∠BDE=30°,
∴BE=
1
2
BD,
∵BE=1,
∴BD=2,
∴BC=2BD=4,
∴△ABC的周長為12.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

當?shù)妊切伪灰粭l直線分割成兩個較小的三角形也是等腰三角形時,原等腰三角形的頂角度數(shù)是多少?這條直線怎樣畫?(討論所有可能的解,并逐一畫圖表示)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,AD是直角三角形△ABC斜邊上的中線,把ADC沿AD對折,點C落在點C′處,連接CC′,則圖中共有等腰三角形______個.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知等邊△OAB的邊長為a,以AB邊上的高OA1為邊,按逆時針方向作等邊△OA1B1,A1B1與OB相交于點A2
(1)求線段OA2的長;
(2)若再以OA2為邊,按逆時針方向作等邊△OA2B2,A2B2與OB1相交于點A3,按此作法進行下去,得到△OA3B3,△OA4B4,…△OAnBn(如圖).求△OA6B6的周長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,P、Q是△ABC的邊BC上的兩點,且BP=PQ=QC=AP=AQ,則∠ABC的大小等于______度.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖1,點P、Q分別是邊長為4cm的等邊△ABC邊AB、BC上的動點,點P從頂點A,點Q從頂點B同時出發(fā),且它們的速度都為1cm/s,
(1)連接AQ、CP交于點M,則在P、Q運動的過程中,∠CMQ變化嗎?若變化,則說明理由,若不變,則求出它的度數(shù);
(2)何時△PBQ是直角三角形?
(3)如圖2,若點P、Q在運動到終點后繼續(xù)在射線AB、BC上運動,直線AQ、CP交點為M,則∠CMQ變化嗎?若變化,則說明理由,若不變,則求出它的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

等邊三角形的面積為8
3
,它的高為( 。
A.2
2
B.4
3
C.2
6
D.2
5

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

下列說法中,正確的是( 。
A.等邊三角形的“三線合一”
B.有一個角是60°的三角形是等邊三角形
C.在直角三角形中,直角邊等于斜邊的一半
D.有兩個角相等的三角形是等邊三角形

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,直角坐標系中,點A的坐標為(a,0),以線段OA為邊在第四象限內作等邊△AOB,點C為x正半軸上一動點(OC>a>0),連接BC,以線段BC為邊在第四象限內作等邊△CBD,直線DA交y軸于點E.
(1)求證:OC=AD.
(2)隨著點C位置的變化,點E的位置是否會發(fā)生變化?若沒有變化,求出點E的坐標;若有變化,請說明理由.
(3)當C點運動到使OA:AC=1:3時,求出此時D點的坐標.

查看答案和解析>>

同步練習冊答案