【題目】定義:直線l1與l2相交于點O,對于平面內(nèi)任意一點M,點M到直線l1、l2的距離分別為p、q,則稱有序?qū)崝?shù)對(p,q)是點M的“距離坐標(biāo)”,根據(jù)上述定義,“距離坐標(biāo)”是(1,2)的點的個數(shù)是( 。
A.2
B.3
C.4
D.5

【答案】C
【解析】解:如圖, ∵到直線l1的距離是1的點在與直線l1平行且與l1的距離是1的兩條平行線a1、a2上,
到直線l2的距離是2的點在與直線l2平行且與l2的距離是2的兩條平行線b1、b2上,
∴“距離坐標(biāo)”是(1,2)的點是M1、M2、M3、M4 , 一共4個.
故選C.

【考點精析】本題主要考查了坐標(biāo)確定位置和點到直線的距離的相關(guān)知識點,需要掌握對于平面內(nèi)任一點P,過P分別向x軸,y軸作垂線,垂足分別在x軸,y軸上,對應(yīng)的數(shù)a,b分別叫點P的橫坐標(biāo)和縱坐標(biāo);從直線外一點到這條直線的垂線段的長度叫做點到直線的距離才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=x2+bx+c與x軸相交于A、B兩點,點B的坐標(biāo)為(3,0),與y軸相交于點C(0,﹣3),頂點為D.

(1)求出拋物線y=x2+bx+c的表達式;
(2)連結(jié)BC,與拋物線的對稱軸交于點E,點P為線段BC上的一個動點,過點P作PF∥DE交拋物線于點F,設(shè)點P的橫坐標(biāo)為m.
①當(dāng)m為何值時,四邊形PEDF為平行四邊形.
②設(shè)四邊形OBFC的面積為S,求S的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABE中,∠A=105°,AE的垂直平分線MNBE于點C,且AB+BC=BE,則∠B的度數(shù)是( 。

A. 45° B. 60° C. 50° D. 55°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為適應(yīng)日益激烈的市場競爭要求,某工廠從2016年1月且開始限產(chǎn),并對生產(chǎn)線進行為期5個月的升降改造,改造期間的月利潤與時間成反比例;到5月底開始恢復(fù)全面生產(chǎn)后,工廠每月的利潤都比前一個月增加10萬元.設(shè)2016年1月為第1個月,第x個月的利潤為y萬元,其圖象如圖所示,試解決下列問題:
(1)分別求該工廠對生產(chǎn)線進行升級改造前后,y與x之間的函數(shù)關(guān)系式;
(2)到第幾個月時,該工廠月利潤才能再次達到100萬元?
(3)當(dāng)月利潤少于50萬元時,為該工廠的資金緊張期,問該工廠資金緊張期共有幾個月?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】南山植物園中現(xiàn)有A、B兩個園區(qū),已知A園區(qū)為長方形,長為(x+y)米,寬為(x﹣y)米;B園區(qū)為正方形,邊長為(x+3y)米.

(1)請用代數(shù)式表示A、B兩園區(qū)的面積之和并化簡;

(2)現(xiàn)根據(jù)實際需要對A園區(qū)進行整改,長增加(11x﹣y)米,寬減少(x﹣2y)米,整改后A區(qū)的長比寬多350米,且整改后兩園區(qū)的周長之和為980米.

①求x、y的值;

②若A園區(qū)全部種植C種花,B園區(qū)全部種植D種花,且C、D兩種花投入的費用與吸引游客的收益如表:

求整改后A、B兩園區(qū)旅游的凈收益之和.(凈收益=收益﹣投入)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】今年“五一”節(jié),小明外出爬山,他從山腳爬到山頂?shù)倪^程中,中途休息了一段時間.設(shè)他從山腳出發(fā)后所用時間為t(分鐘),所走的路程為s(米),s與t之間的函數(shù)關(guān)系如圖所示.下列說法錯誤的是( 。

A. 小明中途休息用了20分鐘

B. 小明休息前爬山的平均速度大于休息后爬山的平均速度

C. 小明在上述過程中所走的路程為6600米

D. 小明休息前爬山的平均速度為每分鐘70米

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】點B(a,5)在第二象限,點C在y軸上移動,以BC為斜邊作等腰直角△BCD,我們發(fā)現(xiàn)直角頂點D點隨著C點的移動也在一條直線上移動,這條直線的函數(shù)表達式是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】A、B、C三人玩籃球傳球游戲,游戲規(guī)則是:第一次傳球由A將球隨機地傳給B、C兩人中的某一人,以后的每一次傳球都是由上次的傳球者隨機地傳給其他兩人中的某一人.
(1)求兩次傳球后,球恰在B手中的概率;
(2)求三次傳球后,球恰在A手中的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某興趣小組想測量位于一池塘兩端的A、B之間的距離,組長小明帶領(lǐng)小組成員沿著與直線AB平行的道路EF行走,當(dāng)行走到點C處,測得∠ACF=45°,再向前行走100米到達點D處,測得∠BDF=60°,已知AB與EF之間的距離為60米,求A、B兩點的距離.

查看答案和解析>>

同步練習(xí)冊答案