【題目】如圖,矩形OABC中,A(6,0)、C(0,)、D(0,),射線l過點D且與x軸平行,點P、Q分別是l和x軸正半軸上動點,滿足∠PQO=60°.
(1)①點B的坐標(biāo)是 ;
②當(dāng)點Q與點A重合時,點P的坐標(biāo)為 ;
(2)設(shè)點P的橫坐標(biāo)為x,△OPQ與矩形OABC的重疊部分的面積為S,試求S與x的函數(shù)關(guān)系式及相應(yīng)的自變量x的取值范圍.
【答案】(1)①(6,),②(3,);(2)
【解析】
(1)①由四邊形OABC是矩形,根據(jù)矩形的性質(zhì),即可求得點B的坐標(biāo);②由正切函數(shù),即可求得∠CAO的度數(shù),③由三角函數(shù)的性質(zhì),即可求得點P的坐標(biāo);
(2)分別從當(dāng)0≤x≤3時,當(dāng)3<x≤5時,當(dāng)5<x≤9時,當(dāng)x>9時去分析求解即可求得答案.
解:(1)①∵四邊形OABC是矩形,
∴AB=OC,OA=BC,
∵A(6,0)、C(0,2),
∴點B的坐標(biāo)為:(6,2);
②如圖1:當(dāng)點Q與點A重合時,過點P作PE⊥OA于E,
∵∠PQO=60°,D(0,3),
∴PE=3,
∴AE=,
∴OE=OA-AE=6-3=3,
∴點P的坐標(biāo)為(3,3);
故答案為:①(6,2),②(3,3);
(2)①當(dāng)0≤x≤3時,
如圖,OI=x,IQ=PItan60°=3,OQ=OI+IQ=3+x;
由題意可知直線l∥BC∥OA,
∴,
∴EF=
此時重疊部分是梯形,其面積為:
S梯形=(EF+OQ)OC=(3+x)
∴.
當(dāng)3<x≤5時,如圖
AQ=OIIOOA=x36=x3
AH=(x3)
S=S梯形﹣S△HAQ=S梯形﹣AHAQ=(3+x)﹣
∴.
③當(dāng)5<x≤9時,如圖
∵CE∥DP
∴
∴
∴
S=(BE+OA)OC=(12﹣)
∴.
④當(dāng)x>9時,如圖
∵AH∥PI
∴
∴
∴
S=OAAH=.
綜上:.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=-x2+mx的對稱軸為直線x=2,若關(guān)于x的-元二次方程-x2+mx-t=0 (t為實數(shù))在l<x<3的范圍內(nèi)有解,則t的取值范圍是( )
A.-5<t≤4 B.3<t≤4 C.-5<t<3 D.t>-5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BA=BE,∠A=∠E,∠ABE=∠CBD,ED交BC于點F,且∠FBD=∠D.
求證:AC∥BD.
證明:∵∠ABE=∠CBD(已知),
∴∠ABE+∠EBC=∠CBD+∠EBC( )
即∠ABC=∠EBD
在△ABC和△EBD中,
,
∴△ABC≌△EBD( ),
∴∠C=∠D( )
∵∠FBD=∠D,
∴∠C= (等量代換),
∴AC∥BD( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=﹣x2+bx+c的圖象經(jīng)過點A(﹣1,0),C(0,3).
(1)求二次函數(shù)的解析式;
(2)在圖中,畫出二次函數(shù)的圖象;
(3)根據(jù)圖象,直接寫出當(dāng)y≤0時,x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩個袋中均裝有三張除所標(biāo)數(shù)值外完全相同的卡片,甲袋中的三張卡片上所標(biāo)有的三個數(shù)值為﹣7,﹣1,3.乙袋中的三張卡片所標(biāo)的數(shù)值為﹣2,1,6.先從甲袋中隨機取出一張卡片,用x表示取出的卡片上的數(shù)值,再從乙袋中隨機取出一張卡片,用y表示取出卡片上的數(shù)值,把x、y分別作為點A的橫坐標(biāo)和縱坐標(biāo).
(1)用適當(dāng)?shù)姆椒▽懗鳇cA(x,y)的所有情況.
(2)求點A落在第三象限的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A是我市某小學(xué),在位于學(xué)校南偏西15°方向距離120米的C點處有一消防車.某一時刻消防車突然接到報警電話,告知在位于C點北偏東75°方向的F點處突發(fā)火災(zāi),消防隊必須立即沿路線CF趕往救火.已知消防車的警報聲傳播半徑為110米,問消防車的警報聲對學(xué)校是否會造成影響?若會造成影響,已知消防車行駛的速度為每小時60千米,則對學(xué)校的影響時間為幾秒?(≈3.6,結(jié)果精確到1秒)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在校園歌手大賽中,甲、乙兩位同學(xué)的表現(xiàn)分外突出,現(xiàn)場A、B、C、D、E、F六位評委的打分情況以及隨機抽取的50名同學(xué)的民意調(diào)查結(jié)果分別如下統(tǒng)計表和不完整的條形統(tǒng)計圖:(說明:隨機抽取的50名同學(xué)每人必須從“好”、“較好”、“一般”中選一票投給每個選手)
A | B | C | D | E | F | |
甲 | 89 | 97 | 90 | 93 | 95 | 94 |
乙 | 89 | 92 | 90 | 97 | 94 | 94 |
(1)a= ,六位評委對乙同學(xué)所打分?jǐn)?shù)的中位數(shù)是 ,并補全條形統(tǒng)計圖;
(2)學(xué)校規(guī)定評分標(biāo)準(zhǔn)如下:去掉評委評分中最高和最低分,再算平均分并將平均分與民意測評分按2:3計算最后得分.求甲、乙兩位同學(xué)的最后得分.(民意測評分=“好”票數(shù)×2+“較好”票數(shù)×1+“一般”票數(shù)×0)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是拋物線圖像的一部分,拋物線的項點坐標(biāo)是A(1,3),與軸的一個交點B(4,0),直線與拋物線交于,兩點,下列結(jié)論:①:②;③方程有兩個相等的實數(shù)根:④當(dāng)時,有;⑤拋物線與軸的另一個交點是(-1,0),其中正確的是( )
A.①②③B.①③④C.①③⑤D.②④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小堯用“描點法”畫二次函數(shù)的 圖像,列表如下:
x | … | -4 | -3 | -2 | -1 | 0 | 1 | 2 | … |
y | … | 5 | 0 | -3 | -4 | -3 | 0 | -5 | … |
(1)由于粗心,小堯算錯了其中的一個 y值,請你指出這個算錯的y值所對應(yīng)的 x = ;
(2)在圖中畫出這個二次函數(shù)的圖像;
(3)當(dāng) y≥5 時,x 的取值范圍是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com