【題目】如圖(1),AB∥CD,猜想∠BPD與∠B,∠D的關(guān)系,說出理由.
解:猜想∠BPD+∠B+∠D=360°
理由:過點P作EF∥AB,
∴∠B+∠BPE=180°(兩直線平行,同旁內(nèi)角互補(bǔ))
∵AB∥CD,EF∥AB,
∴EF∥CD,(如果兩條直線都和第三條直線平行,那么這兩條直線也互相平行.)
∴∠EPD+∠D=180°(兩直線平行,同旁內(nèi)角互補(bǔ))
∴∠B+∠BPE+∠EPD+∠D=360°
∴∠B+∠BPD+∠D=360°
(1)依照上面的解題方法,觀察圖(2),已知AB∥CD,猜想圖中的∠BPD與∠B,∠D的關(guān)系,并說明理由.
(2)觀察圖(3)和(4),已知AB∥CD,猜想圖中的∠BPD與∠B,∠D的關(guān)系,不需要說明理由.
【答案】
(1)解:∠BPD=∠B+∠D.
理由:如圖2,過點P作PE∥AB,
∵AB∥CD,
∴PE∥AB∥CD,
∴∠1=∠B,∠2=∠D,
∴∠BPD=∠1+∠2=∠B+∠D
(2)解:如圖(3):∠BPD=∠D﹣∠B.
理由:∵AB∥CD,
∴∠1=∠D,
∵∠1=∠B+∠P,
∴∠D=∠B+∠P,
即∠BPD=∠D﹣∠B;
如圖(4):∠BPD=∠B﹣∠D.
理由:∵AB∥CD,
∴∠1=∠B,
∵∠1=∠D+∠P,
∴∠B=∠D+∠P,
即∠BPD=∠B﹣∠D.
【解析】(1)首先過點P作PE∥AB,由AB∥CD,可得PE∥AB∥CD,根據(jù)兩直線平行,內(nèi)錯角相等,即可得∠1=∠B,∠2=∠D,則可求得∠BPD=∠B+∠D.(2)由AB∥CD,根據(jù)兩直線平行,內(nèi)錯角相等與三角形外角的性質(zhì),即可求得∠BPD與∠B、∠D的關(guān)系.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題中是假命題的是( )
A. 直角的補(bǔ)角是直角
B. 兩直線平行,一組同旁內(nèi)角的角平分線互相垂直
C. 等腰三角形的高、中線、角平分線三線合一
D. 有兩角及其中一角的平分線對應(yīng)相等的兩個三角形全等
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象l與坐標(biāo)軸分別交于點E、F,與雙曲線y=(x<0)交于點P(﹣1,n),且F是PE的中點.
(1)求直線l的解析式;
(2)若直線x=a與l交于點A,與雙曲線交于點B(不同于A),問a為何值時,PA=PB?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】王老師給同學(xué)們出了一道化簡的題目:2(2x2y+x)﹣3(x2y﹣2x),小亮同學(xué)的做法如下:2(2x2y+x)﹣3(x2y﹣2x)=4x2y+x﹣3x2y﹣2x=x2y﹣x.請你指出小亮的做法正確嗎?如果不正確,請指出錯在哪?并將正確的化簡過程寫下來.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把命題“等角對等邊”,改寫成如果___________________________________________________那么______________________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】兩個城鎮(zhèn)A、B與兩條公路l1、l2位置如圖所示,電信部門需在C處修建一座信號發(fā)射塔,要求發(fā)射塔到兩個城鎮(zhèn)A、B的距離必須相等,到兩條公路l1,l2的距離也必須相等,那么點C應(yīng)選在何處?請在圖中,用尺規(guī)作圖找出所有符合條件的點C.(不寫已知、求作、作法,只保留作圖痕跡)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com