【題目】如圖,在中,,平分.
(1)尺規(guī)作圖:作線段的垂直平分線;(要求:保留作圖痕跡,不寫作法)
(2)記直線與,的交點(diǎn)分別是點(diǎn),,連接求證:.
【答案】(1)見(jiàn)解析;(2)見(jiàn)解析
【解析】
(1)利用尺規(guī)作出線段AB的垂直平分線l即可.
(2)想辦法證明∠ECF=∠EFC=15°,根據(jù)等角對(duì)等邊,EF=EC即可解決問(wèn)題.
解:(1)如下圖所示,直線l為線段AB的垂直平分線,
(2)∵∠ACB=90°,∠B=30°,
∴AC=AB,∠A=60°.
∵EF是AB的垂直平分線,
∴AE=AB,∠AEF=90°,
∴AE=AC,
∴△AEC是等邊三角形,
∴∠AEC=∠ACE=60°,
∴∠FEC=∠AEF+∠AEC=150°.
∵CD平分∠ACB,
∴∠ACF=∠ACB=45°,
∴∠ECF=∠ECA﹣∠FCA=15°,
∴∠EFC=180°﹣∠FEC﹣∠ECF=15°=∠ECF,
∴EF=EC.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,CA=CB,CD=CE,∠ACB=∠DCE=α.
(1)求證:BE=AD;
(2)當(dāng)α=90°時(shí),取AD,BE的中點(diǎn)分別為點(diǎn)P、Q,連接CP,CQ,PQ,如圖②,判斷△CPQ的形狀,并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y=2x+3與x軸相交于點(diǎn)A,與y軸相交于點(diǎn)B.
(1)求A,B兩點(diǎn)的坐標(biāo);
(2)過(guò)B點(diǎn)作直線BP與x軸相交于P,且使OP=2OA, 求ΔABP的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD是直角梯形,AD∥BC,AB⊥AD,且AB=AD+BC,E是DC的中點(diǎn),連結(jié)BE并延長(zhǎng)交AD的延長(zhǎng)線于G.
(1)求證:DG=BC;
(2)F是AB邊上的動(dòng)點(diǎn),當(dāng)F點(diǎn)在什么位置時(shí),FD∥BG;說(shuō)明理由.
(3)在(2)的條件下,連結(jié)AE交FD于H,FH與HD長(zhǎng)度關(guān)系如何?說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AD是△ABC的邊BC上的高,再添加下列條件中的某一個(gè)就能推出△ABC是等腰三角形.①BD=CD;②∠BAD=∠CAD;③AB+BD=AC+CD; ④AB-BD=AC-CD;⑤∠BAD=∠ACD.可以添加的條件序號(hào)正確答案是( )
A.①②B.①②③C.①②③④D.①②③④⑤.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿分12分)
已知:把Rt△ABC和Rt△DEF按如圖(1)擺放(點(diǎn)C與點(diǎn)E重合),點(diǎn)B、C(E)、F在同一條直線上.∠ACB = ∠EDF = 90°,∠DEF = 45°,AC = 8 cm,BC = 6 cm,EF = 9 cm.
如圖(2),△DEF從圖(1)的位置出發(fā),以1 cm/s的速度沿CB向△ABC勻速移動(dòng),在△DEF移動(dòng)的同時(shí),點(diǎn)P從△ABC的頂點(diǎn)B出發(fā),以2 cm/s的速度沿BA向點(diǎn)A勻速移動(dòng).當(dāng)△DEF的頂點(diǎn)D移動(dòng)到AC邊上時(shí),△DEF停止移動(dòng),點(diǎn)P也隨之停止移動(dòng).DE與AC相交于點(diǎn)Q,連接PQ,設(shè)移動(dòng)時(shí)間為t(s)(0<t<4.5).
解答下列問(wèn)題:
(1)當(dāng)t為何值時(shí),點(diǎn)A在線段PQ的垂直平分線上?
(2)連接PE,設(shè)四邊形APEC的面積為y(cm2),求y與t之間的函數(shù)關(guān)系式;是否存在某一時(shí)刻t,使面積y最小?若存在,求出y的最小值;若不存在,說(shuō)明理由.
(3)是否存在某一時(shí)刻t,使P、Q、F三點(diǎn)在同一條直線上?若存在,求出此時(shí)t的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線與軸相交于點(diǎn),直線經(jīng)過(guò)點(diǎn),與軸交于點(diǎn),與軸交于點(diǎn),與直線相交于點(diǎn).
求直線的函數(shù)關(guān)系式;
點(diǎn)是上的一點(diǎn),若的面積等于的面積的倍,求點(diǎn)的坐標(biāo).
設(shè)點(diǎn) 的坐標(biāo)為 ,是否存在 的值使得 最。咳舸嬖,請(qǐng)求出點(diǎn) 的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB=AC,BE與CF是△ABC的高線,且BE與CF相交于點(diǎn)H.
(1)求證:HB=HC;
(2)不添加輔助線,直接寫出圖中所有的全等三角形.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com