【題目】在有理數(shù)的原有運(yùn)算法則中,我們補(bǔ)充定義新運(yùn)算“⊕”如下:當(dāng)a≥b時(shí),a⊕b=b2;當(dāng)a<b時(shí),a⊕b=a.則當(dāng)x=2時(shí),(1⊕x)-(3⊕x)的值為______.

【答案】-3

【解析】

試題解析:在1⊕x中,1相當(dāng)于a,x相當(dāng)于b,

∵x=2,

符合ab時(shí)的運(yùn)算公式,

∴1⊕x=1

3⊕x中,3相當(dāng)于ax相當(dāng)于b

∵x=2,

符合a≥b時(shí)的運(yùn)算公式,

∴3⊕x=4

1⊕x-3⊕x=1-4=-3

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知將一矩形紙片ABCD折疊,使頂點(diǎn)AC重合,折痕為EF

(1)求證:CE=CF;

(2)若AB =8 cm,BC=16 cm,連接AF,寫出求四邊形AFCE面積的思路.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列圖形:線段、等邊三角形、平行四邊形、圓、正六邊形.其中既是軸對(duì)稱圖形又是中心對(duì)稱圖形的有( 。

A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠AOB=30°OP平分∠AOB,PD⊥OBD,PC∥OBOAC,若PC=10,則PD=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】反比例函數(shù)y=(a>0,a為常數(shù))和y=在第一象限內(nèi)的圖象如圖所示,點(diǎn)M在y=的圖象上,MC⊥x軸于點(diǎn)C,交y=的圖象于點(diǎn)A;MD⊥y軸于點(diǎn)D,交y=的圖象于點(diǎn)B,當(dāng)點(diǎn)M在y=的圖象上運(yùn)動(dòng)時(shí),以下結(jié)論:

①S△ODB=S△OCA

②四邊形OAMB的面積不變;

③當(dāng)點(diǎn)A是MC的中點(diǎn)時(shí),則點(diǎn)B是MD的中點(diǎn).

其中正確結(jié)論的個(gè)數(shù)是(

A.0 B.1 C.2 D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】問(wèn)題探究:

1.新知學(xué)習(xí)

若把將一個(gè)平面圖形分為面積相等的兩個(gè)部分的直線叫做該平面圖形的“面線”,其“面線”被該平面圖形截得的線段叫做該平面圖形的“面徑”(例如圓的直徑就是圓的“面徑”).

2.解決問(wèn)題

已知等邊三角形ABC的邊長(zhǎng)為2.

(1)如圖一,若AD⊥BC,垂足為D,試說(shuō)明AD是△ABC的一條面徑,并求AD的長(zhǎng);

(2)如圖二,若ME∥BC,且ME是△ABC的一條面徑,求面徑ME的長(zhǎng);

(3)如圖三,已知D為BC的中點(diǎn),連接AD,M為AB上的一點(diǎn)(0<AM<1),E是DC上的一點(diǎn),連接ME,ME與AD交于點(diǎn)O,且S△MOA=S△DOE

①求證:ME是△ABC的面徑;

②連接AE,求證:MD∥AE;

(4)請(qǐng)你猜測(cè)等邊三角形ABC的面徑長(zhǎng)l的取值范圍(直接寫出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若點(diǎn)M(﹣7,m)、N(﹣8,n)都在函數(shù)y=﹣(k2+2k+4)x+1(k為常數(shù))的圖象上,則m和n的大小關(guān)系是( )
A.m>n
B.m<n
C.m=n
D.不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列各式中,從左到右的變形是因式分解的是( 。

A.3x+3y+13x+y)+1B.a22a+1=(a12

C.m+n)(mn)=m2n2D.xxy)=x2xy

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列計(jì)算中正確的是(
A.a×a3=a3
B.(a23=a5
C.(a+b)3=a3+b3
D.a6÷a2=a4

查看答案和解析>>

同步練習(xí)冊(cè)答案