【題目】如圖,拋物線y=-x2x+x軸交于A、B兩點(點A在點B的左側(cè)),與y軸于點C,已知點D(0,-).

(1)求直線AC的解析式;

(2)如圖1,P為直線AC上方拋物線上的一動點,當PBD的面積最大時,過PPQx軸于點Q,M為拋物線對稱軸上的一動點,過My軸的垂線,垂足為點N,連接PM、NQ,求PM+MN+NQ的最小值;

(3)在(2)問的條件下,將得到的PBQ沿PB翻折得到PBQ′,將PBQ′沿直線BD平移,記平移中的PBQ′P′B′Q″,在平移過程中,設直線P′B′x軸交于點E,則是否存在這樣的點E,使得B′EQ″為等腰三角形?若存在,求此時OE的長.

【答案】(1)直線AC的表達式為;(2)的最小值為;(3).

【解析】分析:(1)求出兩點坐標,利用待定系數(shù)法即可解決問題;

過點Py軸的平行線交直線BD于點F, 設點 ,則,表示出的長度,根據(jù),構(gòu)建出二次函數(shù),根據(jù)二次函數(shù)的性質(zhì)求出最值即可.

分三種情況進行討論即可.

詳解:(1

、、

設直線AC的表達式為,將、代入解析式:

可得 則直線AC的表達式為 ;

2)可得直線BD的解析式為,過點Py軸的平行線交直線BD于點F,

設點 ,則.

,

.

,即時,最大;

,過點P作對稱軸的垂線,垂足為點,可得

關(guān)于軸的對稱點,連接,交軸與點,

再過點作對稱軸的垂線,垂足為點,即為所求點.

此時

,則最小值為 ;

3)當時,

時,.

時,.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】“校園手機”現(xiàn)象越來越受到社會的關(guān)注.“寒假”期間,某校小記者隨機調(diào)查了某地區(qū)若干名學生和家長對中學生帶手機現(xiàn)象的看法,統(tǒng)計整理并制作了如下的統(tǒng)計圖:

(1)求這次調(diào)查的家長人數(shù),并補全圖1;

(2)求圖2中表示家長“贊成”的圓心角的度數(shù);

(3)已知某地區(qū)共6500名家長,估計其中反對中學生帶手機的大約有多少名家長?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB為⊙O的直徑,C為⊙O上一點,AD和過C點的切線互相垂直,垂足為D.

(1)求證:AC平分∠DAB;

(2)過點O作線段AC的垂線OE,垂足為E(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法);

3)若CD=4AC=4,求垂線段OE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】出租車司機小張某天上午營運全是在東西走向的政府大道上進行的,如果規(guī)定向東為正,向西為負,他這天上午的行程是(單位千米)+15,-3,+16,-11,+10,-12,+4,-15,+16,-18

(1)將最后一名乘客送達目的地時,小張距上午出發(fā)點的距離是多少千米?在出發(fā)點的什么方向?

(2)若汽車耗油量為06升/千米,出車時,郵箱有油722升,若小張將最后一名乘客送達目的地,再返回出發(fā)地,問小張今天上午是否需要加油?若要加油至少需要加多少才能返回出發(fā)地?若不用加油,請說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有一種密碼,將英文26個字舟a,b,c,,z(不論大小寫)依次對應1,2,3,,26,這26個自然數(shù)(見表格),當明碼對應的序號x為奇數(shù)時,密碼對應的序號,當明碼對應的序號x為偶數(shù)時,密碼對應的序號+12,按下述規(guī)定,將明碼“l(fā)ove”譯成密碼是(

A.loveB.rkwuC.sdriD.rewj

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某軟件科技公司20人負責研發(fā)與維護游戲、網(wǎng)購、視頻和送餐共4款軟件.投入市場后,游戲軟件的利潤占這4款軟件總利潤的40%.如圖是這4款軟件研發(fā)與維護人數(shù)的扇形統(tǒng)計圖和利潤的條形統(tǒng)計圖.

根據(jù)以上信息,網(wǎng)答下列問題

(1)直接寫出圖中a,m的值;

(2)分別求網(wǎng)購與視頻軟件的人均利潤;

(3)在總?cè)藬?shù)和各款軟件人均利潤都保持不變的情況下,能否只調(diào)整網(wǎng)購與視頻軟件的研發(fā)與維護人數(shù),使總利潤增加60萬元?如果能,寫出調(diào)整方案;如果不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對給定的一張矩形紙片ABCD進行如下操作:先沿CE折疊,使點B落在CD邊上(如圖①),再沿CH折疊,這時發(fā)現(xiàn)點E恰好與點D重合(如圖②

(1)根據(jù)以上操作和發(fā)現(xiàn),求的值;

(2)將該矩形紙片展開.

①如圖③,折疊該矩形紙片,使點C與點H重合,折痕與AB相交于點P,再將該矩形紙片展開.求證:∠HPC=90°;

②不借助工具,利用圖④探索一種新的折疊方法,找出與圖③中位置相同的P點,要求只有一條折痕,且點P在折痕上,請簡要說明折疊方法.(不需說明理由)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】出租車司機小張某天上午營運全是在東西走向的政府大道上進行的,如果規(guī)定向東為正,向西為負,他這天上午的行程是(單位千米)+15,-3,+16,-11,+10,-12,+4,-15,+16,-18

(1)將最后一名乘客送達目的地時,小張距上午出發(fā)點的距離是多少千米?在出發(fā)點的什么方向?

(2)若汽車耗油量為06升/千米,出車時,郵箱有油722升,若小張將最后一名乘客送達目的地,再返回出發(fā)地,問小張今天上午是否需要加油?若要加油至少需要加多少才能返回出發(fā)地?若不用加油,請說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】201853日,中國科學院在上海發(fā)布了中國首款人工智能芯片:寒武紀(MLU100),該芯片在平衡模式下的等效理論峰值速度達每秒128 000 000 000 000次定點運算,將數(shù)

128 000 000 000 000用科學計數(shù)法表示為(

A. 1.281014 B. 1.2810-14 C. 1281012 D. 0.1281011

查看答案和解析>>

同步練習冊答案