【題目】如圖,矩形ABCD的兩邊長(zhǎng)AB=18cm,AD=4cm,點(diǎn)P、Q分別從A、B同時(shí)出發(fā),P在邊AB上沿AB方向以每秒2cm的速度勻速運(yùn)動(dòng),Q在邊BC上沿BC方向以每秒1cm的速度勻速運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為x秒,△PBQ的面積為y(cm2).
(1)求y關(guān)于x的函數(shù)關(guān)系式,并寫出x的取值范圍;
(2)求△PBQ的面積的最大值.
(1) y=-x2+9x(0<x≤4) (2)20
【解析】解:(1)∵, PB=AB-AP=18-2x,BQ=x,
∴y=(18-2x)x,即y=-x2+9x(0<x≤4)。
(2)由(1)知:y=-x2+9x=。
∵當(dāng)0<x≤時(shí),y隨x的增大而增大, 而0<x≤4,
∴當(dāng)x=4時(shí),。
∴△PBQ的最大面積是20cm2。
(1)分別表示出PB、BQ的長(zhǎng),然后根據(jù)三角形的面積公式列式整理即可得解。
(2)把函數(shù)關(guān)系式整理成頂點(diǎn)式解析式,然后根據(jù)二次函數(shù)的最值問(wèn)題解答。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知A(a,1),B(b,﹣2),C(0,c),且(a﹣2)2++|c+2|=0.
(1)如圖1,求A、B、C三點(diǎn)的坐標(biāo).
(2)如圖2,延長(zhǎng)AC至P(﹣a,﹣5),連PO、PB.求.
(3)將線段AC平移,使點(diǎn)A的對(duì)應(yīng)點(diǎn)E恰好落在y軸正半軸上,點(diǎn)C的對(duì)應(yīng)點(diǎn)為F,連AF交y軸于G,當(dāng)EG=3OG時(shí),求點(diǎn)E的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】黃河,既是一條源遠(yuǎn)流長(zhǎng)、波瀾壯闊的自然河,又是一條孕育中華民族燦爛文明的母親河.?dāng)?shù)學(xué)課外實(shí)踐活動(dòng)中,小林和同學(xué)們?cè)邳S河南岸小路上的A,B兩點(diǎn)處,用測(cè)角儀分別對(duì)北岸的觀景亭D進(jìn)行測(cè)量.如圖,測(cè)得∠DAC=45°,∠DBC=65°.若AB=200米,求觀景亭D到小路AC的距離約為多少米?(結(jié)果精確到1米,參考數(shù)據(jù):sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為響應(yīng)環(huán)保組織提出的“低碳生活”的號(hào)召,李明決定不開汽車而改騎自行車上班.有一天,李明騎自行車從家里到工廠上班,途中因自行車發(fā)生故障,修車耽誤了一段時(shí)間,車修好后繼續(xù)騎行,直至到達(dá)工廠(假設(shè)在騎自行車過(guò)程中勻速行駛).李明離家的距離y(米)與離家時(shí)間x(分鐘)的關(guān)系表示如下圖:
(1)李明從家出發(fā)到出現(xiàn)故障時(shí)的速度為 米/分鐘;
(2)李明修車用時(shí) 分鐘;
(3)求線段OA所對(duì)應(yīng)的函數(shù)關(guān)系式(不要求寫出自變量的取值范圍).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1所示,邊長(zhǎng)為a的正方形中有一個(gè)邊長(zhǎng)為b的小正方形,圖2是由圖1中陰影部分拼成的一個(gè)長(zhǎng)方形,設(shè)圖1中陰影部分面積為S1,圖2中陰影部分面積為S2.
(1)請(qǐng)直接用含a,b的代數(shù)式表示S1=______,S2=_____;
(2)寫出利用圖形的面積關(guān)系所揭示的公式:_______;
(3)利用這個(gè)公式說(shuō)明216﹣1既能被15整除,又能被17整除.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的一條弦,OD⊥AB,垂足為點(diǎn)C,交⊙O于點(diǎn)D,點(diǎn)E在⊙O上.
(1)若∠AOD=52°,求∠DEB的度數(shù);
(2)若CD=2,AB=8,求半徑的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩同學(xué)騎自行車從A地沿同一條路到B地,已知乙比甲先出發(fā).他們離出發(fā)地的距離s/km和騎行時(shí)間t/h之間的函數(shù)關(guān)系如圖所示.根據(jù)圖象信息,以下說(shuō)法錯(cuò)誤的是( )
A.他們都騎了20 km
B.兩人在各自出發(fā)后半小時(shí)內(nèi)的速度相同
C.甲和乙兩人同時(shí)到達(dá)目的地
D.相遇后,甲的速度大于乙的速度
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:當(dāng)點(diǎn)C在線段AB上,AC=nAB時(shí),我們稱n為點(diǎn)C在線段AB上的點(diǎn)值,記作dC﹣AB=n.理解:如點(diǎn)C是AB的中點(diǎn)時(shí),即AC=AB,則dC﹣AB=;反過(guò)來(lái),當(dāng)dC﹣AB=時(shí),則有AC=AB.因此,我們可以這樣理解:dC﹣AB=n與AC=nAB具有相同的含義.
應(yīng)用:(1)如圖1,點(diǎn)C在線段AB上,若dC﹣AB=,則AC= AB;若AC=3BC,則dC﹣AB= ;
(2)已知線段AB=10cm,點(diǎn)P、Q分別從點(diǎn)A和點(diǎn)B同時(shí)出發(fā),相向而行,當(dāng)點(diǎn)P到達(dá)點(diǎn)B時(shí),點(diǎn)P、Q均停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為ts.
①若點(diǎn)P、Q的運(yùn)動(dòng)速度均為1cm/s,試用含t的式子表示dP﹣AB和dQ﹣AB,并判斷它們的數(shù)量關(guān)系;
②若點(diǎn)P、Q的運(yùn)動(dòng)速度分別為1cm/s和2cm/s,點(diǎn)Q到達(dá)點(diǎn)A后立即以原速返回,則當(dāng)t為何值時(shí),dP﹣AB+dQ﹣AB=?
拓展:如圖2,在三角形ABC中,AB=AC=12,BC=8,點(diǎn)P、Q同時(shí)從點(diǎn)A出發(fā),點(diǎn)P沿線段AB勻速運(yùn)動(dòng)到點(diǎn)B,點(diǎn)Q沿線段AC,CB勻速運(yùn)動(dòng)至點(diǎn)B.且點(diǎn)P、Q同時(shí)到達(dá)點(diǎn)B,設(shè)dP﹣AB=n,當(dāng)點(diǎn)Q運(yùn)動(dòng)到線段CB上時(shí),請(qǐng)用含n的式子表示dQ﹣CB.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com