【題目】如圖,已知,在ABC中,ABAC,分別以AB、BC為邊作等邊ABE和等邊BCD,連結(jié)CEAD

1)求證:∠ACD=∠ABD;

2)判斷DCCE的位置關(guān)系,并加以證明;

【答案】1)見解析;(2DCCE,理由見解析

【解析】

1)利用三角形全等進(jìn)行證明.

(2)根據(jù)三角形全等求出ABE為等邊三角形,再利用條件得到ABD≌△EBC即可解答.

1)證明:∵△BCD為等邊三角形,

DBDC

ABDACD中,

∴△ABD≌△ACD,

∴∠ABD=∠ACD

2)解:DCCE,證明如下:

由(1)可得ABD≌△ACD,∴∠ADB=∠ADC,

又∵∠BDC60°,

∵△ABE為等邊三角形,

AB=BE,∠ABE60°,

∴∠160°-∠3

∵∠260°-∠3,

∴∠1=2

ABDEBC中,

∴△ABD≌△EBC,

∴∠BCE=∠BDA150°,

∴∠DCE=∠BCE-∠DCB150°60° 90°

DCCE

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在等邊△ABC外側(cè)作直線AP,點B關(guān)于直線AP的對稱點為D,連結(jié)BD,CD,其中CD交直線AP與點E

1)如圖1,若∠PAB30°,則∠ACE   ;

2)如圖2,若60°<∠PAB120°,請補(bǔ)全圖形,判斷由線段AB,CEED可以構(gòu)成一個含有多少度角的三角形,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一電線桿AB的影子分別落在了地上和墻上.同一時刻,小明豎起1米高的直桿MN,量得其影長MF為0.5米,量得電線桿AB落在地上的影子BD長3米,落在墻上的影子CD的高為2米.你能利用小明測量的數(shù)據(jù)算出電線桿AB的高嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AD是△ABC的高,∠BAC=60°,BD=2CD=2,試求AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,DE∥BC,∠ADE=∠EFC,AD:BD=5:3,CF=6,則DE的長為(
A.6
B.8
C.10
D.12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,ABBCECD邊的中點,將△ADE繞點E順時針旋轉(zhuǎn)180°,點D的對應(yīng)點為C,點A的對應(yīng)點為F,過點EMEAFBC于點M,連接AM、BD交于點N,現(xiàn)有下列結(jié)論:

AM=AD+MC;②AM=DE+BM;③DE2=ADCM;④點N為△ABM的外心.其中正確的個數(shù)為(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果點P(2x+6,x-4)在平面直角坐標(biāo)系的第四象限內(nèi),那么x的取值范圍在數(shù)軸上可表示為

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一條公路上順次有AB、C三地,甲、乙兩車同時從A地出發(fā),分別勻速前往B地,C地,甲車到達(dá)B地停留一段時間后原速原路返回,乙車到達(dá)C地后立即原速原路返回,乙車比甲車早1小時返回A地,甲、乙兩車各自行駛的路程y(千米)與時間x(時)(從兩車出發(fā)時開始計時)之間的圖象如圖所示.

1)在上述變化過程中,自變量是   ,因變量是   

2)乙車行駛的速度為   千米/小時;

3)甲車到達(dá)B地停留了多久?B地與C地之間的距離為多少千米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在如圖的直角坐標(biāo)系中,畫出函數(shù)y=-2x+3的圖象,并結(jié)合圖象回答下列問題:

(1)y的值隨x值的增大而 (填增大減小”);

(2)圖象與x軸的交點坐標(biāo)是 ;圖象與y軸的交點坐標(biāo)是 ;

(3)當(dāng)x 時,y <0 ;

(4)直線y=-2x+3與兩坐標(biāo)軸所圍成的三角形的面積是: .

查看答案和解析>>

同步練習(xí)冊答案