【題目】1)計(jì)算:|6|7+(﹣3

2)計(jì)算:﹣32÷3×(﹣23

3)化簡(jiǎn):22x2y+x)﹣3x2y2x

4)解方程:52x3x2

【答案】1)﹣4;(21;(3x2y+8x;(4x

【解析】

1)原式利用絕對(duì)值的代數(shù)意義計(jì)算,再利用加減法則計(jì)算即可求出值;

2)原式先計(jì)算乘方運(yùn)算,再計(jì)算乘除運(yùn)算,最后算加減運(yùn)算即可求出值;

3)原式去括號(hào)合并即可得到結(jié)果;

4)方程去括號(hào),移項(xiàng)合并,把x系數(shù)化為1,即可求出解.

1)原式=673=﹣4

2)原式=﹣3+21;

3)原式=4x2y+2x3x2y+6xx2y+8x;

4)去括號(hào)得:52x3x6

移項(xiàng)得:﹣2x﹣3x=﹣6-5,

合并同類項(xiàng)得:-5x=-11,

系數(shù)化為1得:x

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)軸上A、B、C三點(diǎn)所代表的數(shù)分別是a、b、1.且|a1||1b||ab|.下列四個(gè)選項(xiàng)中,有(  )個(gè)能表示A、BC三點(diǎn)在數(shù)軸上的位置關(guān)系?

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,AB∥CD,BF=DE,AE⊥BD,CF⊥BD,垂足分別為E,F(xiàn).

(1)求證:△ABE≌△CDF;

(2)若AC與BD交于點(diǎn)O,求證:AC與BD互相平分.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知A是雙曲線在第一象限上的一動(dòng)點(diǎn),連接AO并延長(zhǎng)交另一分支于點(diǎn)B,以AB為

邊作等邊三角形ABC,點(diǎn)C在第四象限,已知點(diǎn)C的位置始終在一函數(shù)圖象上運(yùn)動(dòng),則這個(gè)函數(shù)解

析式為( )

A. y=﹣ B. y=﹣(x>0) C. y=﹣6x(x>0) D. y= 6x(x>0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某農(nóng)場(chǎng)去年計(jì)劃生產(chǎn)玉米和小麥共200噸.采用新技術(shù)后,實(shí)際產(chǎn)量為225噸,其中玉米超產(chǎn)5%,小麥超產(chǎn)15%.該農(nóng)場(chǎng)去年實(shí)際生產(chǎn)玉米、小麥各多少噸?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某林場(chǎng)計(jì)劃購(gòu)買(mǎi)甲、乙兩種樹(shù)苗共800株,甲種樹(shù)苗每株24元,乙種樹(shù)苗每株30元.相關(guān)資料表明:甲、乙兩種樹(shù)苗的成活率分別為85%,90%.

(1)若購(gòu)買(mǎi)這兩種樹(shù)苗共用去21000元,則甲、乙兩種樹(shù)苗各購(gòu)買(mǎi)多少株?

(2)若要使這批樹(shù)苗的總成活率不低于88%,則甲種樹(shù)苗至多購(gòu)買(mǎi)多少株?

(3)在(2)的條件下,應(yīng)如何選購(gòu)樹(shù)苗,使購(gòu)買(mǎi)樹(shù)苗的費(fèi)用最低,并求出最低費(fèi)用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】月電科技有限公司用160萬(wàn)元,作為新產(chǎn)品的研發(fā)費(fèi)用,成功研制出了一種市場(chǎng)急需的電子

產(chǎn)品,已于當(dāng)年投入生產(chǎn)并進(jìn)行銷售.已知生產(chǎn)這種電子產(chǎn)品的成本為4元/件,在銷售過(guò)程中發(fā)現(xiàn):

每年的年銷售量(萬(wàn)件)與銷售價(jià)格(元/件)的關(guān)系如圖所示,其中AB為反比例函數(shù)圖象的一

部分,BC為一次函數(shù)圖象的一部分.設(shè)公司銷售這種電子產(chǎn)品的年利潤(rùn)為(萬(wàn)元).(注:若上一

年盈利,則盈利不計(jì)入下一年的年利潤(rùn);若上一年虧損,則虧損計(jì)作下一年的成本.)

(1)請(qǐng)求出(萬(wàn)件)與(元/件)之間的函數(shù)關(guān)系式;

(2)求出第一年這種電子產(chǎn)品的年利潤(rùn)(萬(wàn)元)與(元/件)之間的函數(shù)關(guān)系式,并求出第一年年利潤(rùn)的最大值;

(3)假設(shè)公司的這種電子產(chǎn)品第一年恰好按年利潤(rùn)(萬(wàn)元)取得最大值時(shí)進(jìn)行銷售,現(xiàn)根據(jù)第一年的盈虧情況,決定第二年將這種電子產(chǎn)品每件的銷售價(jià)格(元)定在8元以上(),當(dāng)?shù)诙甑哪昀麧?rùn)不低于103萬(wàn)元時(shí),請(qǐng)結(jié)合年利潤(rùn)(萬(wàn)元)與銷售價(jià)格(元/件)的函數(shù)示意圖,求銷售價(jià)格(元/件)的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,點(diǎn)為線段延長(zhǎng)線上的一點(diǎn),點(diǎn)的中點(diǎn),且點(diǎn)不與點(diǎn)重合,,設(shè)

①若,如圖2,則 ;

②用含的代數(shù)式表示的長(zhǎng),直接寫(xiě)出答案; ;

若點(diǎn)為線段上一點(diǎn),且,你能說(shuō)明點(diǎn)是線段的中點(diǎn)嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,大長(zhǎng)方形被分割成4個(gè)標(biāo)號(hào)分別為(1)(2)(3)(4)的小正方形和5個(gè)小長(zhǎng)方形,其中標(biāo)號(hào)為(5)的小長(zhǎng)方形的周長(zhǎng)為a,則大長(zhǎng)方形的周長(zhǎng)為( )

A.3aB.4aC.5aD.6a

查看答案和解析>>

同步練習(xí)冊(cè)答案