【題目】如圖,某翼裝飛行員從離水平地面高AC=500m的A處出發(fā),沿著俯角為15°的方向,直線滑行1600米到達D點,然后打開降落傘以75°的俯角降落到地面上的B點.求他飛行的水平距離BC(結(jié)果精確到1m).

【答案】解:過點D作DE⊥AC于點E,過點D作DF⊥BC于點F,

由題意可得:∠ADE=15°,∠BDF=15°,AD=1600m,AC=500m,
∴cos∠ADE=cos15°= ≈0.97,
≈0.97,
解得:DE=1552(m),
sin15°= ≈0.26,
≈0.26,
解得;AE=416(m),
∴DF=500﹣416=84(m),
∴tan∠BDF=tan15°= ≈0.27,
≈0.27,
解得:BF=22.68(m),
∴BC=CF+BF=1552+22.68=1574.68≈1575(m),
答:他飛行的水平距離為1575m.
【解析】首先過點D作DE⊥AC于點E,過點D作DF⊥BC于點F,進而里銳角三角函數(shù)關(guān)系得出DE、AE的長,即可得出DF的長,求出BC即可.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A,B兩點在反比例函數(shù)y= 的圖象上,C,D兩點在反比例函數(shù)y= 的圖象上,AC⊥y軸于點E,BD⊥y軸于點F,AC=2,BD=1,EF=3,則k1﹣k2的值是(
A.6
B.4
C.3
D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知正方形ABC1D1的邊長為1,延長C1D1到A1 , 以A1C1為邊向右作正方形A1C1C2D2 , 延長C2D2到A2 , 以A2C2為邊向右作正方形A2C2C3D3(如圖所示),以此類推….若A1C1=2,且點A,D2 , D3 , …,D10都在同一直線上,則正方形A9C9C10D10的邊長是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AD=8,E是邊AB上一點,且AE= AB.⊙O經(jīng)過點E,與邊CD所在直線相切于點G(∠GEB為銳角),與邊AB所在直線交于另一點F,且EG:EF= :2.當邊AD或BC所在的直線與⊙O相切時,AB的長是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣x2+2x+c與x軸交于A,B兩點,它的對稱軸與x軸交于點N,過頂點M作ME⊥y軸于點E,連結(jié)BE交MN于點F,已知點A的坐標為(﹣1,0).
(1)求該拋物線的解析式及頂點M的坐標.
(2)求△EMF與△BNF的面積之比.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把球放在長方體紙盒內(nèi),球的一部分露出盒外,其主視圖如圖.⊙O與矩形ABCD的邊BC,AD分別相切和相交(E,F(xiàn)是交點),已知EF=CD=8,則⊙O的半徑為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】課本中有一道作業(yè)題: 有一塊三角形余料ABC,它的邊BC=120mm,高AD=80mm.要把它加工成正方形零件,使正方形的一邊在BC上,其余兩個頂點分別在AB,AC上.問加工成的正方形零件的邊長是多少mm?
小穎解得此題的答案為48mm,小穎善于反思,她又提出了如下的問題.


(1)如果原題中要加工的零件是一個矩形,且此矩形是由兩個并排放置的正方形所組成,如圖1,此時,這個矩形零件的兩條邊長又分別為多少mm?請你計算.
(2)如果原題中所要加工的零件只是一個矩形,如圖2,這樣,此矩形零件的兩條邊長就不能確定,但這個矩形面積有最大值,求達到這個最大值時矩形零件的兩條邊長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,從A地到B地的公路需經(jīng)過C地,圖中AC=10千米,∠CAB=25°,∠CBA=37°,因城市規(guī)劃的需要,將在A、B兩地之間修建一條筆直的公路.
(1)求改直的公路AB的長;
(2)問公路改直后比原來縮短了多少千米?(sin25°≈0.42,cos25°≈0.91,sin37°≈0.60,tan37°≈0.75)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,AB=5,tanA= ,將△ABC沿直線l翻折,恰好使點A與點B重合,直線l分別交邊AB、AC于點D、E;
(1)求△ABC的面積;
(2)求sin∠CBE的值.

查看答案和解析>>

同步練習冊答案