【題目】對(duì)于一個(gè)函數(shù),自變量xa時(shí),函數(shù)值y也等于a,我們稱a為這個(gè)函數(shù)的不動(dòng)點(diǎn).如果二次函數(shù)yx2+2x+c有兩個(gè)相異的不動(dòng)點(diǎn)x1、x2,且x11x2,則c的取值范圍是( )

A. c<﹣3B. c<﹣2C. cD. c1

【答案】B

【解析】

由題意知二次函數(shù)yx2+2x+c有兩個(gè)相異的不動(dòng)點(diǎn)x1x2,由此可知方程x2+x+c0有兩個(gè)不相等的實(shí)數(shù)根,即=1-4c>0,再由題意可得函數(shù)y= x2+x+c0x=1時(shí),函數(shù)值小于0,即1+1+c<0,由此可得關(guān)于c的不等式組,解不等式組即可求得答案.

由題意知二次函數(shù)yx2+2x+c有兩個(gè)相異的不動(dòng)點(diǎn)x1、x2

所以x1、x2是方程x2+2x+cx的兩個(gè)不相等的實(shí)數(shù)根,

整理,得:x2+x+c0

所以=1-4c>0,

x2+x+c0的兩個(gè)不相等實(shí)數(shù)根為x1、x2,x11x2,

所以函數(shù)y= x2+x+c0x=1時(shí),函數(shù)值小于0,

1+1+c<0,

綜上則

解得c<﹣2,

故選B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)yax22ax+ca0)圖象上的兩點(diǎn)(x1,y1)和(3y2),若y1y2,則x1的取值范圍是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知AB兩地相距2.4km,甲騎車勻速?gòu)?/span>A地前往B地,如圖表示甲騎車過(guò)程中離A地的路程ykm)與他行駛所用的時(shí)間xmin)之間的關(guān)系.根據(jù)圖像解答下列問(wèn)題:

1)甲騎車的速度是 km/min;

2)若在甲出發(fā)時(shí),乙在甲前方0.6km處,兩人均沿同一路線同時(shí)出發(fā)勻速前往B地,在第3分鐘甲追上了乙,兩人到達(dá)B地后停止.請(qǐng)?jiān)谙旅嫱黄矫嬷苯亲鴺?biāo)系中畫(huà)出乙離A地的距離ykm)與所用時(shí)間xmin)的關(guān)系的大致圖像;

3)乙在第幾分鐘到達(dá)B地?

4)兩人在整個(gè)行駛過(guò)程中,何時(shí)相距0.2km

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在△ABC中,ABAC,∠BACα,直線l經(jīng)過(guò)點(diǎn)A(不經(jīng)過(guò)點(diǎn)B或點(diǎn)C),點(diǎn)C關(guān)于直線l的對(duì)稱點(diǎn)為點(diǎn)D,連接BD,CD.

(1)如圖1

①求證:點(diǎn)B,C,D在以點(diǎn)A為圓心,AB為半徑的圓上.

②直接寫(xiě)出∠BDC的度數(shù)(用含α的式子表示)______.

(2)如圖2,當(dāng)α60°時(shí),過(guò)點(diǎn)DBD的垂線與直線l交于點(diǎn)E,求證:AEBD.

(3)如圖3,當(dāng)α90°時(shí),記直線lCD的交點(diǎn)為F,連接BF.將直線l繞點(diǎn)A旋轉(zhuǎn),當(dāng)線段BF的長(zhǎng)取得最大值時(shí),直接寫(xiě)出tanFBC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知ABC中,AB=BC=5,tanABC=

(1)求邊AC的長(zhǎng);

(2)設(shè)邊BC的垂直平分線與邊AB的交點(diǎn)為D,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,AB為⊙O的直徑,C為⊙O上一點(diǎn),DBC延長(zhǎng)線一點(diǎn),且BC=CD,直線CE與⊙O相切于點(diǎn)C,與AD相交于點(diǎn)E

1)求證:CEAD;

2)如圖2,設(shè)BE與⊙O交于點(diǎn)F,AF的延長(zhǎng)線與CE交于點(diǎn)P

①求證:∠PCF=CBF

②若PF=6,tanPEF=,求PC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy(如圖),已知拋物線y=﹣+bx+c(其中bc是常數(shù))經(jīng)過(guò)點(diǎn)A(2,﹣2)與點(diǎn)B(0,4),頂點(diǎn)為M

1)求該拋物線的表達(dá)式與點(diǎn)M的坐標(biāo);

2)平移這條拋物線,得到的新拋物線與y軸交于點(diǎn)C(點(diǎn)C在點(diǎn)B的下方),且BCM的面積為3.新拋物線的對(duì)稱軸l經(jīng)過(guò)點(diǎn)A,直線lx軸交于點(diǎn)D

求點(diǎn)A隨拋物線平移后的對(duì)應(yīng)點(diǎn)坐標(biāo);

點(diǎn)E、G在新拋物線上,且關(guān)于直線l對(duì)稱,如果正方形DEFG的頂點(diǎn)F在第二象限內(nèi),求點(diǎn)F的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,Rt△ABC中,∠ACB=90°,以AC為直徑的⊙O交AB于點(diǎn)D,過(guò)點(diǎn)D作⊙O的切線交BC于點(diǎn)E,連接OE

(1)求證:△DBE是等腰三角形

(2)求證:△COE∽△CAB

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,菱形ABCD的邊長(zhǎng)為6,∠BAD=120°,點(diǎn)EAB的中點(diǎn),點(diǎn)FAC上的一動(dòng)點(diǎn),則EF+BF的最小值是__________

查看答案和解析>>

同步練習(xí)冊(cè)答案