【題目】如圖,點、、分別是四邊形、、的中點,則下列說法:

①若,則四邊形為矩形;

②若,則四邊形為菱形;

③若四邊形是平行四邊形,則互相垂直平分;

④若四邊形是正方形,則互相垂直且相等.

其中正確的個數(shù)是(

A.1B.2C.3D.4

【答案】A

【解析】

根據(jù)三角形中位線定理、平行四邊形的判定定理得到四邊形EFGH是平行四邊形,根據(jù)矩形、菱形、正方形的判定定理判斷即可.

解:∵EF分別是邊AB、BC的中點,
EFACEF=AC,
同理可知,HGAC,HG=AC,
EFHG,EF=HG,
∴四邊形EFGH是平行四邊形,

AC=BD,則四邊形EFGH是菱形,故①說法錯誤;
ACBD,則四邊形EFGH是矩形,故②說法錯誤;

若四邊形是平行四邊形,ACBD不一定互相垂直平分,故③說法錯誤;

若四邊形是正方形,ACBD互相垂直且相等,故④說法正確;

故選:A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:

(1)1+(-2)+|-2-3|-5

(2)

(3) ()

(4)(1)2012(5+(8)÷(3)+5

(5)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某電子商投產(chǎn)一種新型電子產(chǎn)品,每件制造成本為18元,試銷過程發(fā)現(xiàn),每月銷量y(萬件)與銷售單價x(元)之間關(guān)系可以近似地看作一次函數(shù).

(1)寫出每月的利潤z(萬元)與銷售單價x(元)之間函數(shù)解析式(利潤=售價-制造成本);

(2)當銷售單價為多少元時,廠商每月能夠獲得350萬元的利潤?當銷售單價為多少元時,廠商每月能夠獲得最大利潤?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O為矩形ABCD對角線的交點,DEAC,CEBD

1試判斷四邊形OCED的形狀,并說明理由;

2)若AB=6BC=8,求四邊形OCED的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某檢修小組從地出發(fā),在東西向的馬路上檢修線路,如果規(guī)定向東行駛為正,向西行駛為負。一天中七次行駛記錄如下。(單位: )

,,,,

(1)求收工時距地多遠?在地的什么方向?

(2)在第幾次記錄時離地最遠,并求出最遠距離。

(3)若每千米耗油升。問共耗油多少升?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD的對角線AC、BD相交于點O,DE∥AC,CE∥BD.

1)求證:四邊形OCED為菱形;

2)連接AEBE,AEBE相等嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】傳統(tǒng)文化與我們生活息息相關(guān),中華傳統(tǒng)文化包括古文古詩、詞語、樂曲、賦、民族音樂、民族戲劇、曲藝、國畫、書法、對聯(lián)、燈謎、射覆、酒令、歇后語等.在中華優(yōu)秀傳統(tǒng)文化進校園活動中,某校為學(xué)生請“戲曲進校園”和民族音樂”做節(jié)目演出,其中一場“戲曲進校園”的價格比一場“民族音樂”節(jié)目演出的價格貴600元,用20000元購買“戲曲進校園”的場數(shù)是用8800元購買“民族音樂節(jié)目演出場數(shù)的2倍,求一場“民族音樂”節(jié)目演出的價格.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖2 - 4所示,長方形ABCD的長為5 cm,寬為4 cm,如果將它的長和寬都減去x(cm),那么它剩下的小長方形AB′C′D′的面積為y(cm2)

(1)寫出yx的函數(shù)關(guān)系式;

(2)上述函數(shù)是什么函數(shù)?

(3)自變量x的取值范圍是什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合與實踐:折紙中的數(shù)學(xué)

問題背景

在數(shù)學(xué)活動課上,老師首先將平行四邊形紙片ABCD按如圖①所示方式折疊,使點C與點A重合,點D落到D′處,折痕為EF.這時同學(xué)們很快證得:△AEF是等腰三角形.接下來各學(xué)習(xí)小組也動手操作起來,請你解決他們提出的問題.

操作發(fā)現(xiàn)

(1) “爭先”小組將矩形紙片ABCD按上述方式折疊,如圖②,發(fā)現(xiàn)重疊部分△AEF恰好是等邊三角形,求矩形ABCD的長、寬之比是多少?

實踐探究

(2)“勵志”小組將矩形紙片ABCD沿EF折疊,如圖③,使B點落在AD邊上的B′處;沿BG折疊,使D點落在D′處,且BD′過F點.試探究四邊形EFGB′是什么特殊四邊形?

(3)再探究:在圖③中連接BB′,試判斷并證明△BBG的形狀.

查看答案和解析>>

同步練習(xí)冊答案