精英家教網 > 初中數學 > 題目詳情
如圖,已知:正方形ABCD邊長為1,E、F、G、H分別為各邊上的點,且AE=BF=CG=DH,設小正方形EFGH的面積為s,AE為x,則s關于x的函數圖象大致是( 。
A.B.C.D.
B
根據條件可知△AEH≌△BFE≌△CGF≌△DHG,設AE為x,則AH=1-x,根據勾股定
理EH2=AE2+AH2=x2+(1-x)2,進而可求出函數解析式,求出答案.
解:∵根據正方形的四邊相等,四個角都是直角,且AE=BF=CG=DH,
∴可證△AEH≌△BFE≌△CGF≌△DHG.
設AE為x,則AH=1-x,根據勾股定理,得
EH2=AE2+AH2=x2+(1-x)2
即s=x2+(1-x)2
s=2x2-2x+1,
∴所求函數是一個開口向上,對稱軸是直線x=
∴自變量的取值范圍是大于0小于1.
故選B.
練習冊系列答案
相關習題

科目:初中數學 來源:不詳 題型:解答題

某商家獨家銷售具有地方特色的某種商品,每件進價為40元.經過市場調查,一周的銷售量y件與銷售單價x(x≥50)元/件的關系如下表:
銷售單價x
(元/件)

55
60
70
75

一周的銷售量y
(件)

450
400
300
250

(1)直接寫出y與x的函數關系式:                           
(2)設一周的銷售利潤為S元,請求出S與x的函數關系式,并確定當銷售單價在什么范圍內變化時,一周的銷售利潤隨著銷售單價的增大而增大?
(3)雅安地震牽動億萬人民的心,商家決定將商品一周的銷售利潤全部寄往災區(qū),在商家購進該商品的貸款不超過10000元情況下,請你求出該商家最大捐款數額是多少元?

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

二次函數y=ax2+bx+c的圖象如圖所示,則下列關系式錯誤的是()
A.a>0B.c>0C.b2-4ac>0D.a+b+c>0

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,已知二次函數y=a(x2-6x+8)(a>0)的圖象與x軸交于點A、B兩點,與y軸交于點C.
(1)求A、B兩點的坐標;
(2)若S△ABC=8,則過A、B、C三點的圓是否與拋物線有第四個交點D?若存在,求出D點坐標;若不存在,說明理由.
(3)將△OAC沿直線AC翻折,點O的對應點為O'.
①若O'落在該拋物線的對稱軸上,求實數a的值;
②是否存在正整數a,使得點O'落在△ABC的內部,若存在,求出整數a的值;若不存在,請說明理由.

 

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

拋物線y=3x2向右平移1個單位,再向下平移2個單位,所得到的拋物線是(    )
A.           B.
C.             D.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

若關于x的函數y=kx2+2x﹣1與x軸僅有一個公共點,則實數k的值為      

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

已知:M、N兩點關于y軸對稱,且點M在雙曲線上,點N在直線上,設點M的坐標為,則二次函數(      )
A.有最大值,最大值為B.有最大值,最大值為
C.有最小值,最小值為D.有最小值,最小值為

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,在平面直角坐標系xOy中,邊長為2的正方形OABC的頂點A、C分別在x軸、y軸的正半軸上,二次函數y=-x2+bx+c的圖象經過B、C兩點.

(1)求該二次函數的解析式;
(2)結合函數的圖象探索:當y>0時x的取值范圍.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

矩形ABCD中,AD=8 cm,AB=6 cm.動點E從點C開始沿邊CB向點B以2 cm/s的速度運動至點B停止,動點F從點C同時出發(fā)沿邊CD向點D以1 cm/s的速度運動至點D停止.如圖可得到矩形CFHE,設運動時間為x(單位:s),此時矩形ABCD去掉矩形CFHE后剩余部分的面積為y(單位:cm2),則y與x之間的函數關系用圖象表示大致是下圖中的

查看答案和解析>>

同步練習冊答案