【題目】如圖,的直徑,是半圓上的一點,平分,垂足為,于點,連接

判斷的位置關系,并證明你的結論;

的中點,的半徑為,求圖中陰影部分的面積.

【答案】(1)CD與圓O相切,理由詳見解析;(2)

【解析】

1)只要證明OCAD即可解決問題.

(2)只要證明四邊形AECO是菱形,∠DEC=DAO=60°,根據陰影面積等于三角形DEC,即可解決問題.

與圓相切,理由如下:

的平分線,

,

,

,

,

,

與圓相切;

連接,交,

為直徑,

,

,

相切,為切點,

,

,

,

,

,

,

,

∴四邊形是平行四邊形,∵,

∴四邊形是菱形,

,易知,

,

∵點的中點,

的中位線,

,即,

中,根據勾股定理得:,

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】為了深入貫徹黨的十九大精神,我縣某中學開展了十九大精神進校園知識氣賽活動,特對本校部分學生(隨機抽樣)進行了一次相關知識的測試(成績分為A,B,C,E五個組,x表示測試成績),通過對測試成績的分析得到如圖所示的兩幅不完整的統(tǒng)計圖,請你根據圖中提供的信息解答以下問題:

A組:90≤x≤100

B組:80≤x<90

C組:70≤x<80

D組:60≤x<70

E組:x<60

(1)參加調查測試的學生共有   人,扇形C圓心角的度數(shù)是;   

(2)請將兩幅統(tǒng)計圖補充完整;

(3)本次調查測試成績的中位數(shù)落在哪個小組內,說明理由;

(4)本次調查測試成績在80分以上(含80分)為優(yōu)秀,該中學共有3000人,請估計全校測試成績?yōu)閮?yōu)秀的學生有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為7的正方形ABCD中放入五個小正方形后形成一個中心對稱圖形,其中兩頂點E、F分別在邊BC、AD上,則放入的五個小正方形的面積之和為______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某水果批發(fā)商銷售每箱進價為40元的蘋果,物價部門規(guī)定每箱售價不得高于55元,市場調查發(fā)現(xiàn),若每箱以50元的價格調查,平均每天銷售90箱,價格每提高1元,平均每天少銷售3箱.

1)求平均每天銷售量y(箱)與銷售價x(元/箱)之間的函數(shù)關系式.

2)求該批發(fā)商平均每天的銷售利潤w(元)與銷售價x(元/箱)之間的函數(shù)關系式.

3)當每箱蘋果的銷售價為多少元時,可以獲得最大利潤?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為美化校園,計劃對面積為1800m2的區(qū)域進行綠化,安排甲、乙兩個工程隊完成.已知甲隊每天能完成綠化的面積是乙隊每天能完成綠化的面積的2倍,并且在獨立完成面積為400 m2區(qū)域的綠化時,甲隊比乙隊少用4.

1)求甲、乙兩工程隊每天能完成綠化的面積分別是多少m2?

2)若學校每天需付給甲隊的綠化費用是0.4萬元,乙隊為0.25萬元,要使這次的綠化總費用不超過8萬元,至少應安排甲隊工作多少天?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(9)如圖,在平面直角坐標系中,Rt△ABC的三個頂點分別是A(-3,2),B(0,4),C(0,2).

(1)△ABC以點C為旋轉中心旋轉180°,畫出旋轉后對應的△A1B1C;平移△ABC,A的對應點A2的坐標為(0,4),畫出平移后對應的△A2B2C2;

(2)若將△A1B1C繞某一點旋轉可以得到△A2B2C2,請直接寫出旋轉中心的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,有一條雙向公路隧道,其橫斷面由拋物線和矩形ABCD的三邊DA、AB、BC圍成,隧道最大高度為4.9米,AB=10米,BC=2.4米,若有一輛高為4米、寬為2米的集裝箱的汽車要通過隧道,為了使箱頂不碰到隧道頂部,又不違反交通規(guī)則(汽車應靠道路右側行駛,不能超過道路中線),汽車的右側必須離開隧道右壁幾米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知△ABC中,∠ABC=90°,AB=BCAE∠BAC的角平分線.CD⊥AE,與AE的延長線交于D點,與AB的延長線交于F點。求證CD=AE

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將正方形OABC放在平面直角坐標系中,O是原點,A的坐標為(12),則點C的坐標為_____

查看答案和解析>>

同步練習冊答案