【題目】某廠家為了解銷售轎車臺數(shù)與廣告宣傳費之間的關系,得到如表統(tǒng)計數(shù)據表:根據數(shù)據表可得回歸直線方程 ,其中 , ,據此模型預測廣告費用為9萬元時,銷售轎車臺數(shù)為( )
廣告費用x(萬元) | 2 | 3 | 4 | 5 | 6 |
銷售轎車y(臺數(shù)) | 3 | 4 | 6 | 10 | 12 |
A.17
B.18
C.19
D.20
科目:初中數(shù)學 來源: 題型:
【題目】在四棱柱ABCD﹣A1B1C1D1中,四邊形ABCD為平行四邊形,AA1⊥平面ABCD,∠BAD=60°,AB=2,BC=1.AA1= ,E為A1B1的中點.
(1)求證:平面A1BD⊥平面A1AD;
(2)求多面體A1E﹣ABCD的體積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙、丙三人投擲飛鏢,他們的成績(環(huán)數(shù))如下面的頻數(shù)條統(tǒng)計圖所示.則甲、乙、丙三人的訓練成績方差S甲2 , S乙2 , S丙2的大小關系是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知曲線C上任意一點M到點F(0,1)的距離比它到直線l:y=﹣2的距離小1. (Ⅰ)求曲線C的方程;
(Ⅱ)斜率不為0且過點P(2,2)的直線m與曲線C交于A,B兩點,設 =λ ,當△AOB的面積為4 時(O為坐標原點),求λ的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在“新零售”模式的背景下,某大型零售公司為推廣線下分店,計劃在S市的A區(qū)開設分店.為了確定在該區(qū)開設分店的個數(shù),該公司對該市已開設分店的其他區(qū)的數(shù)據作了初步處理后得到下列表格.記x表示在各區(qū)開設分店的個數(shù),y表示這x個分店的年收入之和.
x(個) | 2 | 3 | 4 | 5 | 6 |
y(百萬元) | 2.5 | 3 | 4 | 4.5 | 6 |
(Ⅰ)該公司已經過初步判斷,可用線性回歸模型擬合y與x的關系,求y關于x的線性回歸方程y= ;
(Ⅱ)假設該公司在A區(qū)獲得的總年利潤z(單位:百萬元)與x,y之間的關系為z=y﹣0.05x2﹣1.4,請結合(Ⅰ)中的線性回歸方程,估算該公司應在A區(qū)開設多少個分店時,才能使A區(qū)平均每個分店的年利潤最大?
參考公式: = x+a, = = ,a= ﹣ .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線E:y2=x與圓M:(x﹣4)2+y2=r2(r>0)相交于A、B、C、D四個點.
(Ⅰ)求r的取值范圍;
(Ⅱ)當四邊形ABCD的面積最大時,求對角線AC、BD的交點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下面給出四種說法: ①用相關指數(shù)R2來刻畫回歸效果,R2越小,說明模型的擬合效果越好;
②命題P:“x0∈R,x02﹣x0﹣1>0”的否定是¬P:“x∈R,x2﹣x﹣1≤0”;
③設隨機變量X服從正態(tài)分布N(0,1),若P(x>1)=p,則P(﹣1<X<0)= ﹣p
④回歸直線一定過樣本點的中心( , ).
其中正確的說法有(請將你認為正確的說法的序號全部填寫在橫線上)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在三棱柱ABC﹣A1B1C1中,側面ABB1A1為矩形,AB= ,AA1=2,D為AA1的中點,BD與AB1交于點O,CO⊥側面ABB1A1 .
(1)證明:CD⊥AB1;
(2)若OC=OA,求直線C1D與平面ABC所成角的正弦值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(列方程(組)及不等式解應用題)
春節(jié)期間,某商場計劃購進甲、乙兩種商品,已知購進甲商品2件和乙商品3件共需270元;購進甲商品3件和乙商品2件共需230元.
(1)求甲、乙兩種商品每件的進價分別是多少元?
(2)商場決定甲商品以每件40元出售,乙商品以每件90元出售,為滿足市場需求,需購進甲、乙兩種商品共100件,且甲種商品的數(shù)量不少于乙種商品數(shù)量的4倍,請你求出獲利最大的進貨方案,并確定最大利潤.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com