【題目】已知三角形的兩邊長(zhǎng)分別為3和6,則這個(gè)三角形的第三邊長(zhǎng)可以是__________(寫出一個(gè)即可),
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若線段AB平行于x軸,AB的長(zhǎng)為4,且A的坐標(biāo)為(2,3),求點(diǎn)B的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】節(jié)約是一種美德,節(jié)約是一種智慧.據(jù)不完全統(tǒng)計(jì),全國(guó)每年浪費(fèi)食物總量折合糧食可養(yǎng)活約3億5千萬人,350000000用科學(xué)記數(shù)法表示為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】【問題提出】
學(xué)習(xí)了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”) 和直角三角形全等的判定方法(即“HL”) 后, 我們繼續(xù)對(duì)“兩個(gè)三角形滿足兩邊和其中一邊的對(duì)角對(duì)應(yīng)相等”的情形進(jìn)行研究.
【初步思考】
不妨將問題用符號(hào)語言表示為: 在△ABC和△DEF中, AC = DF, BC = EF, ∠B =∠E,
然后, 對(duì)∠B進(jìn)行分類, 可分為“∠B是直角、鈍角、銳角”三種情況進(jìn)行探究.
【深入探究】
第一種情況: 當(dāng)∠B是直角時(shí), △ABC≌△DEF.
(1) 如圖①, 在△ABC和△DEF, AC = DF, BC = EF, ∠B =∠E = 90°, 根據(jù)_____________, 可以知道Rt△ABC≌Rt△DEF.
第二種情況: 當(dāng)∠B是鈍角時(shí), △ABC≌△DEF.
(2) 如圖②, 在△ABC和△DEF, AC = DF, BC = EF, ∠B =∠E, 且∠B、∠E都是鈍角.
求證: △ABC≌△DEF.
第三種情況: 當(dāng)∠B是銳角時(shí), △ABC和△DEF不一定全等.
(3) 在△ABC和△DEF, AC = DF, BC = EF, ∠B = ∠E, 且∠B、∠E都是銳角, 請(qǐng)你用尺規(guī)在圖③中作出△DEF, 使△DEF和△ABC不全等. (不寫作法, 保留作圖痕跡)
(4) ∠B還要滿足什么條件, 就可以使△ABC≌△DEF ? 請(qǐng)直接寫出結(jié)論: 在△ABC和△DEF中, AC = DF, BC = EF, ∠B =∠E, 且∠B、∠E都是銳角, 若__________, 則△ABC≌△DEF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】先閱讀,再回答問題:要比較代數(shù)式A、B的大小,可以作差A(yù)﹣B,比較差的取值,當(dāng)A﹣B>0時(shí),有A>B;當(dāng)A﹣B=0時(shí),有A=B;當(dāng)A﹣B<0時(shí),有A<B.”例如,當(dāng)a<0時(shí),比較a2和a(a+1)的大小.可以觀察a2﹣a(a+1)=a2﹣a2﹣a=﹣a.因?yàn)楫?dāng)a<0時(shí),﹣a>0,所以當(dāng)a<0時(shí),a2>a(a+1).
(1)已知M=(x﹣2)(x﹣16),N=(x﹣4)(x﹣8),比較M、N的大小關(guān)系.
(2)某種產(chǎn)品的原料提價(jià),因而廠家決定對(duì)于產(chǎn)品進(jìn)行提價(jià),現(xiàn)有三種方案: 方案1:第一次提價(jià)p%,第二次提價(jià)q%;
方案2:第一次提價(jià)q%,第二次提價(jià)p%;
方案3:第一、二次提價(jià)均為 %.
如果設(shè)原價(jià)為a元,請(qǐng)用含a、p、q的式子表示提價(jià)后三種方案的價(jià)格.
方案1:;方案2:;方案3:
如果p,q是不相等的正數(shù),三種方案哪種提價(jià)最多?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】未來三年,國(guó)家將投入8 500億元用于緩解群眾“看病難,看病貴”問題.將8 500億元用科學(xué)記數(shù)法表示為
( )
A.0.85×104億元
B.8.5×103億元
C.8.5×104億元
D.85×102億元
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若a>b,則下列不等式一定成立的是( )
A. 1-a<1-b B. -a>-b C. ac2>bc2 D. a-2<b-2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,正方形OABC的頂點(diǎn)O與原點(diǎn)重合,頂點(diǎn)A,C分別在x軸、y軸上,反比例函數(shù)y=(k≠0,x>0)的圖象與正方形的兩邊AB、BC分別交于點(diǎn)M、N,連接OM、ON、MN.
(1)證明△OCN≌△OAM;
(2)若∠NOM=45°,MN=2,求點(diǎn)C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列方程的變形中,移項(xiàng)正確的是( )
A. 由7+x=3得x=3+7 B. 由5x=x-3得5x+x=-3
C. 由2x+3-x=7得2x+x=7-3 D. 由2x-7+x=6得2x+x=6+7
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com