【題目】如圖,在四邊形ABCD中,BD為一條對角線,AD∥BC,AD=2BC,∠ABD=90°,E為AD的中點,連接BE.
(1)求證:四邊形BCDE為菱形;
(2)連接AC,若AC平分∠BAD,BC=1,求AC的長.
【答案】
(1)證明:∵AD=2BC,E為AD的中點,
∴DE=BC,
∵AD∥BC,
∴四邊形BCDE是平行四邊形,
∵∠ABD=90°,AE=DE,
∴BE=DE,
∴四邊形BCDE是菱形
(2)解:連接AC.
∵AD∥BC,AC平分∠BAD,
∴∠BAC=∠DAC=∠BCA,
∴AB=BC=1,
∵AD=2BC=2,
∴sin∠ADB= ,
∴∠ADB=30°,
∴∠DAC=30°,∠ADC=60°,
在Rt△ACD中,∵AD=2,
∴CD=1,AC= .
【解析】(1)由DE=BC,DE∥BC,推出四邊形BCDE是平行四邊形,再證明BE=DE即可解決問題;(2)在Rt△只要證明∠ADC=60°,AD=2即可解決問題;
【考點精析】通過靈活運用直角三角形斜邊上的中線,掌握直角三角形斜邊上的中線等于斜邊的一半即可以解答此題.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,邊長為1的正方形ABCD的對角線AC、BD相交于點O,有直角∠MPN,使直角頂點P與點O重合,直角邊PM、PN分別與OA、OB重合,然后逆時針旋轉(zhuǎn)∠MPN,旋轉(zhuǎn)角為θ(0°<θ<90°),PM、PN分別交AB、BC于E、F兩點,連接EF交OB于點G,則下列結(jié)論中正確的是 .
①EF= OE;②S四邊形OEBF:S正方形ABCD=1:4;③BE+BF= OA;④在旋轉(zhuǎn)過程中,當△BEF與△COF的面積之和最大時,AE= .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O交AC邊于點D,過點C作CF∥AB,與過點B的切線交于點F,連接BD.
(1)求證:BD=BF;
(2)若AB=10,CD=4,求BC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在邊長為1的正方形網(wǎng)格中,△ABC的頂點均在格點上.
(1)畫出△ABC關(guān)于原點成中心對稱的△A'B'C',并直接寫出△A'B'C'各頂點的坐標.
(2)求點B旋轉(zhuǎn)到點B'的路徑長(結(jié)果保留π).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小蘇和小林在如圖1所示的跑道上進行4×50米折返跑.在整個過程中,跑步者距起跑線的距離y(單位:m)與跑步時間t(單位:s)的對應(yīng)關(guān)系如圖2所示.下列敘述正確的是( )
A.兩人從起跑線同時出發(fā),同時到達終點
B.小蘇跑全程的平均速度大于小林跑全程的平均速度
C.小蘇前15s跑過的路程大于小林前15s跑過的路程
D.小林在跑最后100m的過程中,與小蘇相遇2次
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,拋物線y=x2﹣4x+3與x軸交于點A、B(點A在點B的左側(cè)),與y軸交于點C.
(1)求直線BC的表達式;
(2)垂直于y軸的直線l與拋物線交于點P(x1 , y1),Q(x2 , y2),與直線BC交于點N(x3 , y3),若x1<x2<x3 , 結(jié)合函數(shù)的圖象,求x1+x2+x3的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD中,點E,F(xiàn)分別在邊AB,BC上,AF=DE,AF和DE相交于點G,
(1)觀察圖形,寫出圖中所有與∠AED相等的角.
(2)選擇圖中與∠AED相等的任意一個角,并加以證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在等邊△ABC中,D是邊AC上一點,連接BD,將△BCD繞點B逆時針旋轉(zhuǎn)60°,得到△BAE,連接ED,若BC=5,BD=4.則下列四個結(jié)論:①AE∥BC;②∠ADE=∠BDC;③△BDE是等邊三角形;④△AED的周長是9.其中正確的結(jié)論是(把你認為正確結(jié)論的序號都填上.)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=x2﹣4x﹣5與x軸相交于A、B兩點,與y軸相交于點C,點D是直線BC下方拋物線上一點,過點D作y軸的平行線,與直線BC相交于點E.
(1)求直線BC的解析式;
(2)當線段DE的長度最大時,求點D的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com