【題目】如圖,在邊長(zhǎng)為1的正方形網(wǎng)格中,△ABC的頂點(diǎn)均在格點(diǎn)上.
(1)畫出△ABC關(guān)于原點(diǎn)成中心對(duì)稱的△A'B'C',并直接寫出△A'B'C'各頂點(diǎn)的坐標(biāo).
(2)求點(diǎn)B旋轉(zhuǎn)到點(diǎn)B'的路徑長(zhǎng)(結(jié)果保留π).
【答案】
(1)
解:如下圖所示:
(2)
解:由圖可知:OB= =3 ,
∴ =πOB=3 π
【解析】(1)根據(jù)關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo),可得答案;(2)根據(jù)弧長(zhǎng)公式,可得答案.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解弧長(zhǎng)計(jì)算公式的相關(guān)知識(shí),掌握若設(shè)⊙O半徑為R,n°的圓心角所對(duì)的弧長(zhǎng)為l,則l=nπr/180;注意:在應(yīng)用弧長(zhǎng)公式進(jìn)行計(jì)算時(shí),要注意公式中n的意義.n表示1°圓心角的倍數(shù),它是不帶單位的,以及對(duì)中心對(duì)稱及中心對(duì)稱圖形的理解,了解如果把一個(gè)圖形繞著某一點(diǎn)旋轉(zhuǎn)180度后能與另一個(gè)圖形重合,那么我們就說(shuō),這兩個(gè)圖形成中心對(duì)稱;如果把一個(gè)圖形繞著某一點(diǎn)旋轉(zhuǎn)180度后能與自身重合,那么我們就說(shuō),這個(gè)圖形成中心對(duì)稱圖形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若關(guān)于x的方程x2+2mx+m2+3m﹣2=0有兩個(gè)實(shí)數(shù)根x1、x2 , 則x1(x2+x1)+x22的最小值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的頂點(diǎn)A、C分別在x軸的負(fù)半軸、y軸的正半軸上,點(diǎn)B在第二象限.將矩形OABC繞點(diǎn)O順時(shí)針旋轉(zhuǎn),使點(diǎn)B落在y軸上,得到矩形ODEF,BC與OD相交于點(diǎn)M.若經(jīng)過(guò)點(diǎn)M的反比例函數(shù)y= (x<0)的圖象交AB于點(diǎn)N,S矩形OABC=32,tan∠DOE= ,則BN的長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y=﹣ x+c與x軸交于點(diǎn)A(3,0),與y軸交于點(diǎn)B,拋物線y=﹣ x2+bx+c經(jīng)過(guò)點(diǎn)A,B.
(1)求點(diǎn)B的坐標(biāo)和拋物線的解析式;
(2)M(m,0)為x軸上一動(dòng)點(diǎn),過(guò)點(diǎn)M且垂直于x軸的直線與直線AB及拋物線分別交于點(diǎn)P,N.
①點(diǎn)M在線段OA上運(yùn)動(dòng),若以B,P,N為頂點(diǎn)的三角形與△APM相似,求點(diǎn)M的坐標(biāo);
②點(diǎn)M在x軸上自由運(yùn)動(dòng),若三個(gè)點(diǎn)M,P,N中恰有一點(diǎn)是其它兩點(diǎn)所連線段的中點(diǎn)(三點(diǎn)重合除外),則稱M,P,N三點(diǎn)為“共諧點(diǎn)”.請(qǐng)直接寫出使得M,P,N三點(diǎn)成為“共諧點(diǎn)”的m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD是邊長(zhǎng)為1的正方形,點(diǎn)E在AD邊上運(yùn)動(dòng),且不與點(diǎn)A和點(diǎn)D重合,連結(jié)CE,過(guò)點(diǎn)C作CF⊥CE交AB的延長(zhǎng)線于點(diǎn)F,EF交BC于點(diǎn)G.
(1)求證:△CDE≌△CBF;
(2)當(dāng)DE= 時(shí),求CG的長(zhǎng);
(3)連結(jié)AG,在點(diǎn)E運(yùn)動(dòng)過(guò)程中,四邊形CEAG能否為平行四邊形?若能,求出此時(shí)DE的長(zhǎng);若不能,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,BD為一條對(duì)角線,AD∥BC,AD=2BC,∠ABD=90°,E為AD的中點(diǎn),連接BE.
(1)求證:四邊形BCDE為菱形;
(2)連接AC,若AC平分∠BAD,BC=1,求AC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】類比等腰三角形的定義,我們定義:有一組鄰邊相等的凸四邊形叫做“等鄰邊四邊形”.
(1)概念理解:
如圖1,在四邊形ABCD中,添加一個(gè)條件使得四邊形ABCD是“等鄰邊四邊形”.請(qǐng)寫出你添加的一個(gè)條件.
(2)問(wèn)題探究:
①小紅猜想:對(duì)角線互相平分的“等鄰邊四邊形”是菱形,她的猜想正確嗎?請(qǐng)說(shuō)明理由.
②如圖2,小紅畫了一個(gè)Rt△ABC,其中∠ABC=90°,AB=2,BC=1,并將Rt△ABC沿∠ABC的平分線BB′方向平移得到△A′B′C′,連結(jié)AA′,BC′,小紅要使平移后的四邊形ABC′A′是“等鄰邊四邊形”,應(yīng)平移多少距離(即線段BB′的長(zhǎng))?
(3)拓展應(yīng)用:
如圖3,“等鄰邊四邊形”ABCD中,AB=AD,∠BAD+∠BCD=90°,AC,BD為對(duì)角線,AC= AB,試探究BC,CD,BD的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AD∥BE∥CF,它們依次交直線l1、l2于點(diǎn)A、B、C和點(diǎn)D、E、F.
(1)如果AB=6,BC=8,DF=21,求DE的長(zhǎng);
(2)如果DE:DF=2:5,AD=9,CF=14,求BE的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com