【題目】常用的分解因式的方法有提取公因式法、公式法,但有更多的多項式只用上述方法就無法分解,如,我們細(xì)心觀察這個式子就會發(fā)現(xiàn),前兩項符合平方差公式,后兩項可提取公因式,前后兩部分分別分解因式后會產(chǎn)生公因式,然后提取公因式就可以完成整個式子的分解因式了,過程為:,這種分解因式的方法叫分組分解法,利用這種方法解決下列問題.

(1)分解因式:;

(2)△ABC三邊ab、c滿足,判斷△ABC的形狀.

【答案】1;(2)△ABC的形狀是等腰三角形;

【解析】

1)先根據(jù)完全平方公式進(jìn)行分解,再根據(jù)平方差公式分解即可;

2)先從中提取公因式,從中提取公因式,再提取它們的公因式,最后根據(jù),判斷出△ABC是等腰三角形.

1;

2)∵,

,

,

,

,

,

的形狀是等腰三角形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 已知,如圖,點C、D在⊙O上,直徑AB=6 ,弦AC、BD相交于點E . 若CE=BC , 則陰影部分面積為( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,∠A=20°,以△ABC的一邊為邊畫等腰三角形,使得它的第三個頂點在△ABC的其他邊上,則可以畫出的等腰三角形的個數(shù)最多為(  )

A.4B.5C.6D.7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ACB中,∠ACB=90°,∠A=35°,將△ABC繞點C逆時針旋轉(zhuǎn)α角到△A1B1C的位置,A1B1恰好經(jīng)過點B,則旋轉(zhuǎn)角α的度數(shù)等( )
A.35°
B.55°
C.65°
D.70°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線ay2x+4分別與x、y軸交于點A、C.將直線a豎直向下平移7個單位后得到直線b,直線b交直線ADyx+2于點E

1)若點Q為直線x軸上一動點,是否存在點Q,使△QDE的周長最小,若存在,求△QDE周長的最小值及點Q的坐標(biāo):

2)已知點M是第一象限直線a上的任意一點,過點M作直線cx軸,交直線b于點N,H為直線AD上任意一點,是否存在點M,使得△MNH成為等腰直角三角形?若存在,請直接寫出點H的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】株洲五橋主橋主孔為拱梁鋼構(gòu)組合體系(如圖1),小明暑假旅游時,來到五橋觀光,發(fā)現(xiàn)拱梁的路面部分有均勻排列著9根支柱,他回家上網(wǎng)查到了拱梁是拋物線,其跨度為20米,拱高(中柱)10米,于是他建立如圖2的坐標(biāo)系,發(fā)現(xiàn)可以將余下的8根支柱的高度都算出來了,請你求出中柱左邊第二根支柱CD的高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】探究:2221=2×211×21=2(  )

 2322=    =2(  )

 2423=    =2(  ),

……

1)請仔細(xì)觀察,寫出第4個等式;

2)請你找規(guī)律,寫出第n個等式;

3)計算:21+22+23++2201922020

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一次函數(shù)y=kx+b與y=kbx,它們在同一坐標(biāo)系內(nèi)的圖象可能為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若將一幅三角板按如圖所示的方式放置,則下列結(jié)論中不正確的是( )

A. 1=∠3 B. 如果∠230°,則有ACDE

C. 如果∠230°,則有BCAD D. 如果∠230°,必有∠4=∠C

查看答案和解析>>

同步練習(xí)冊答案