【題目】如圖,在平面直角坐標(biāo)系中,拋物線軸的負(fù)半軸于點(diǎn).點(diǎn)軸正半軸上一點(diǎn),點(diǎn)關(guān)于點(diǎn)的對(duì)稱(chēng)點(diǎn)恰好落在拋物線上.過(guò)點(diǎn)軸的平行線交拋物線于另一點(diǎn).若點(diǎn)的橫坐標(biāo)為1,則的長(zhǎng)為________.

【答案】3

【解析】

解方程x2+mx=0A(﹣m,0),再利用對(duì)稱(chēng)的性質(zhì)得到點(diǎn)A的坐標(biāo)為(﹣1,0),所以拋物線解析式為y=x2+x,再計(jì)算自變量為1的函數(shù)值得到A′1,2),接著利用C點(diǎn)的縱坐標(biāo)為2求出C點(diǎn)的橫坐標(biāo),然后計(jì)算A′C的長(zhǎng).

當(dāng)y=0時(shí),x2+mx=0,解得x1=0x2=m,則A(﹣m,0),

∵點(diǎn)A關(guān)于點(diǎn)B的對(duì)稱(chēng)點(diǎn)為A′,點(diǎn)A′的橫坐標(biāo)為1,

∴點(diǎn)A的坐標(biāo)為(﹣10),

∴拋物線解析式為y=x2+x,

當(dāng)x=1時(shí),y=x2+x=2,則A′12),

當(dāng)y=2時(shí),x2+x=2,解得x1=2,x2=1,則C(﹣2,1),

AC的長(zhǎng)為1﹣(﹣2=3

故答案為:3

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知某種汽車(chē)剎車(chē)后行駛的距離s(單位:m)關(guān)于行駛的時(shí)間t(單位:s)的函數(shù)關(guān)系式為s=15t-at2,且t=1時(shí),s=9.

1)求st的函數(shù)關(guān)系式;

2)該汽車(chē)剎車(chē)后到停下來(lái)前進(jìn)了多遠(yuǎn)?

3)該汽車(chē)剎車(chē)后前進(jìn)6m時(shí)行駛了多長(zhǎng)時(shí)間?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是一副眼鏡鏡片下半部分輪廓對(duì)應(yīng)的兩條拋物線關(guān)于y軸對(duì)稱(chēng).ABx軸,AB=4cm,最低點(diǎn)Cx軸上,高CH=1cm,BD=2cm.則右輪廓線DFE所在拋物線的函數(shù)解析式為__________________________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平行四邊形ABCD中,過(guò)點(diǎn)B的直線與對(duì)角線AC、邊AD分別交于點(diǎn)EF.過(guò)點(diǎn)EEGBC,交ABG,則圖中相似三角形有(

A. 7對(duì) B. 6對(duì) C. 5對(duì) D. 4對(duì)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解方程.

1x22x20

25x+23x2

35x32x29

4)(y3)(y1)=8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖:平行四邊形ABCD中,EAB中點(diǎn),,連E、FACG,則AGGC=______________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某超市銷(xiāo)售一種商品,成本每千克40元,規(guī)定每千克售價(jià)不低于成本,且不高于80元,經(jīng)市場(chǎng)調(diào)查,每天的銷(xiāo)售量y(千克)與每千克售價(jià)x(元)滿足一次函數(shù)關(guān)系,部分?jǐn)?shù)據(jù)如下表:

(1)求yx之間的函數(shù)表達(dá)式;

(2)設(shè)商品每天的總利潤(rùn)為W(元),求Wx之間的函數(shù)表達(dá)式(利潤(rùn)=收入-成本);

(3)試說(shuō)明(2)中總利潤(rùn)W隨售價(jià)x的變化而變化的情況,并指出售價(jià)為多少元時(shí)獲得最大利潤(rùn),最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,根據(jù)圖象解答下列問(wèn)題:

(1)寫(xiě)出方程ax2+bx+c=0的兩個(gè)根;

(2)寫(xiě)出不等式ax2+bx+c<0的解集;

(3)若方程ax2+bx+c+k=0有兩個(gè)不相等的實(shí)數(shù)根,求k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,點(diǎn)O在斜邊AB上,以O(shè)為圓心,OB為半徑作圓,分別與BC,AB相交于點(diǎn)D,E,連結(jié)AD.已知∠CAD=∠B,

(1)求證:AD是⊙O的切線.

(2)若BC=8,tanB=,求⊙O 的半徑.

查看答案和解析>>

同步練習(xí)冊(cè)答案