【題目】如圖1,CE平分∠ACD,AE平分∠BAC,∠EAC+∠ACE=90°
(1)請判斷AB與CD的位置關系并說明理由;
(2)如圖2,當∠E=90°且AB與CD的位置關系保持不變,移動直角頂點E,使∠MCE=∠ECD,當直角頂點E點移動時,問∠BAE與∠MCD否存在確定的數(shù)量關系?并說明理由;
(3)如圖3,P為線段AC上一定點,點Q為直線CD上一動點且AB與CD的位置關系保持不變,當點Q在射線CD上運動時(點C除外)∠CPQ+∠CQP與∠BAC有何數(shù)量關系?猜想結論并說明理由.
【答案】(1)AB∥CD,理由見解析;(2)∠BAE+∠MCD=90°,理由見解析;(3)∠BAC=∠PQC+∠QPC,理由見解析
【解析】
(1)先根據(jù)CE平分∠ACD,AE平分∠BAC得出∠BAC=2∠EAC,∠ACD=2∠ACE,再由∠EAC+∠ACE=90°可知∠BAC+∠ACD=180,故可得出結論;
(2)過E作EF∥AB,根據(jù)平行線的性質可知EF∥AB∥CD,∠BAE=∠AEF,∠FEC=∠DCE,故∠BAE+∠ECD=90°,再由∠MCE=∠ECD即可得出結論;
(3)根據(jù)AB∥CD可知∠BAC+∠ACD=180°,∠QPC+∠PQC+∠PCQ=180°,故∠BAC=∠PQC+∠QPC.
(1)∵CE平分∠ACD,AE平分∠BAC,
∴∠BAC=2∠EAC,∠ACD=2∠ACE,
∵∠EAC+∠ACE=90°,
∴∠BAC+∠ACD=180°,
∴AB∥CD;
(2)∠BAE+∠MCD=90°;
過E作EF∥AB,
∵AB∥CD,
∴EF∥AB∥CD,
∴∠BAE=∠AEF,∠FEC=∠DCE,
∵∠E=90°,
∴∠BAE+∠ECD=90°,
∵∠MCE=∠ECD,
∴∠BAE+∠MCD=90°;
(3)∵AB∥CD,
∴∠BAC+∠ACD=180°,
∵∠QPC+∠PQC+∠PCQ=180°,
∴∠BAC=∠PQC+∠QPC.
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在平面直角坐標系中,點A、B、C的坐標分別為(﹣1,3)、(﹣4,1)、(﹣2,1),將△ABC沿一確定方向平移得到△A1B1C1,點B的對應點B1的坐標是(1,2),則點A1,C1的坐標分別是 ( )
A. A1(4,4),C1(3,2) B. A1(3,3),C1(2,1) C. A1(4,3),C1(2,3) D. A1(3,4),C1(2,2)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等邊△ABC沿射線BC向右平移到△DCE的位置,連接AD、BD,則下列結論:①AD=BC;②BD、AC互相平分;③四邊形ACED是菱形.其中正確的個數(shù)是
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD中,∠ADB=60°,∠CDB=50°.
(1)若AD∥BC,AB∥CD,求∠ABC的度數(shù);
(2)若∠A=70°,請寫出圖中平行的線段,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知正方形ABCD的對角線AC,BD相交于點O.
(1)如圖1,E,G分別是OB,OC上的點,CE與DG的延長線相交于點F.若DF⊥CE,求證:OE=OG;
(2)如圖2,H是BC上的點,過點H作EH⊥BC,交線段OB于點E,連結DH交CE于點F,交OC于點G.若OE=OG,
①求證:∠ODG=∠OCE;
②當AB=1時,求HC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若關于x的一元二次方程ax2+bx﹣1=0(a≠0)有一根為x=2019,則一元二次方程a(x﹣1)2+b(x﹣1)=1必有一根為( 。
A.B.2020C.2019D.2018
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關于x的一元二次方程x2﹣(2k+1)x+k2+k=0.
(1)求證:方程有兩個不相等的實數(shù)根;
(2)若△ABC的兩邊AB,AC的長是這個方程的兩個實數(shù)根.第三邊BC的長為5,
①若△ABC是以BC為斜邊的直角三角形,求k的值.
②若△ABC是等腰三角形,求k的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,如圖,.
(1)請以AB、BC為鄰邊用兩種不同的方法畫平行四邊形ABCD,并說明此畫法的合理性(不寫作法,保留作圖痕跡.);
(2)在上述畫出的平行四邊形中,若,,,求對角線BD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小天家、小亮家、學校依次在同一條筆直的公路旁(各自到公路的距離忽略不計),每天早上7點整小天都會從家出發(fā)以每分鐘60米的速度走到距他家600米的小亮家,然后兩人以小天同樣的速度準時在7:30到校早讀.某日早上7點過,小亮在家等小天的時候突然想起今天輪到自己值日掃地了,所以就以每分鐘60米的速度先向學校走去,后面打算再和小天解釋,小天來到小亮家一看小亮不在家,立刻想到小亮今天是值日生(停留及思考時間忽略不計),于是他就以每分鐘100米的速度去追小亮,兩人之間的距離y(米)及小亮出發(fā)的時間x(分)之間的函數(shù)關系如下圖所示.請問當小天追上小亮時離學校還有_____米.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com