【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(-1.5,0),B(0,2),將△ABO順著x軸的正半軸無滑動(dòng)的滾動(dòng),第一次滾動(dòng)到①的位置,點(diǎn)B的對(duì)應(yīng)點(diǎn)記作B1;第二次滾動(dòng)到②的位置,點(diǎn)B1的對(duì)應(yīng)點(diǎn)記作B2;第三次滾動(dòng)到③的位置,點(diǎn)B2的對(duì)應(yīng)點(diǎn)記作B3;依次進(jìn)行下去,則點(diǎn)B2020的坐標(biāo)為__________

【答案】

【解析】

先利用翻轉(zhuǎn)的性質(zhì)、點(diǎn)坐標(biāo)的變化規(guī)律分別求出點(diǎn)的坐標(biāo),再歸納總結(jié)出一般規(guī)律,由此即可得出答案.

由翻轉(zhuǎn)的性質(zhì)得:,則

由翻轉(zhuǎn)過程可知,點(diǎn)重合,則

點(diǎn)的橫坐標(biāo)為,縱坐標(biāo)為2,即

同理可得:點(diǎn)重合,點(diǎn)的橫坐標(biāo)為,縱坐標(biāo)為0

點(diǎn)的橫坐標(biāo)為,縱坐標(biāo)為2,即

歸納類推得出以下規(guī)律:(其中,n為正整數(shù))

1)點(diǎn)的橫坐標(biāo)變化規(guī)律為,縱坐標(biāo)均為0

2)點(diǎn)的橫坐標(biāo)變化規(guī)律為,縱坐標(biāo)均為0

3)點(diǎn)的橫坐標(biāo)變化規(guī)律為,縱坐標(biāo)均為2

點(diǎn)的坐標(biāo)變化規(guī)律符合(1

則點(diǎn)的橫坐標(biāo)為,縱坐標(biāo)為0,即

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中,當(dāng)時(shí),;當(dāng)時(shí),

1)根據(jù)給定的條件,則_____________________

2)在給出的平面直角坐標(biāo)系中,畫出函數(shù)圖像;

3)①結(jié)合所畫的圖像,直接寫出方程的解,解為________________.(精確到十分位)

②若一次函數(shù)的圖像與的圖像有且只有三個(gè)交點(diǎn),則的取值范圍是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABCABD中,∠DBA=∠CAB,ACBD交于點(diǎn)F

1)如圖1,若∠DAF∠CBF,求證:ADBC;

2)如圖2,∠D135°,∠C45°AD2,AC4,求BD的長(zhǎng).

3)如圖3,若∠DBA18°,∠D108°,∠C72°AD1,直接寫出DB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線經(jīng)過點(diǎn)A(-3,0)C(0,3),交x軸于另一點(diǎn)B,其頂點(diǎn)為D

1)求拋物線的解析式;

2)點(diǎn)P為拋物線上一點(diǎn),直線CPx軸于點(diǎn)E,若△CAE與△OCD相似,求P點(diǎn)坐標(biāo);

3)如果點(diǎn)Fy軸上,點(diǎn)M在直線AC上,那么在拋物線上是否存在點(diǎn)N,使得以C,FM,N為頂點(diǎn)的四邊形是菱形?若存在,請(qǐng)求出菱形的周長(zhǎng);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小明在大樓30米高(即PH30米)的窗口P處進(jìn)行觀測(cè),測(cè)得山坡上A處的俯角∠APQ15°,山腳B處的俯角∠BPQ60°,已知該山坡的坡度i(即tanABC)為1,點(diǎn)P,H,B,C,A在同一個(gè)平面上,點(diǎn)H、B、C在同一條直線上,且PHHC

1)求出山坡坡角(∠ABC)的大。

2)求A、B兩點(diǎn)間的距離(結(jié)果精確到0.1米,參考數(shù)據(jù):1.732).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC與△CDE中,∠ACBCDE90°ACBC,CDED,連接AE,BEFAE的中點(diǎn),連接DF,△CDE繞著點(diǎn)C旋轉(zhuǎn).

(1)如圖1,當(dāng)點(diǎn)D落在AC上時(shí),DFBE的數(shù)量關(guān)系是: ;

(2)如圖2,當(dāng)△CDE旋轉(zhuǎn)到該位置時(shí),DFBE是否仍具有(1)中的數(shù)量關(guān)系,如果具有,請(qǐng)給予證明;如果沒有,請(qǐng)說明理由;

(3)如圖3,當(dāng)點(diǎn)E落在線段CB延長(zhǎng)線上時(shí),若CDAC2,求DF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=﹣x2+bx+c經(jīng)過點(diǎn)A43),頂點(diǎn)為B,對(duì)稱軸是直線x2

1)求拋物線的函數(shù)表達(dá)式和頂點(diǎn)B的坐標(biāo);

2)如圖1,拋物線與y軸交于點(diǎn)C,連接AC,過AADx軸于點(diǎn)D,E是線段AC上的動(dòng)點(diǎn)(點(diǎn)E不與AC兩點(diǎn)重合);

i)若直線BE將四邊形ACOD分成面積比為13的兩部分,求點(diǎn)E的坐標(biāo);

ii)如圖2,連接DE,作矩形DEFG,在點(diǎn)E的運(yùn)動(dòng)過程中,是否存在點(diǎn)G落在y軸上的同時(shí)點(diǎn)F恰好落在拋物線上?若存在,求出此時(shí)AE的長(zhǎng);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,對(duì)角線AC,BD交于點(diǎn)O,以AD,OD為鄰邊作平行四邊形ADOE,連接BE

1)求證:四邊形AOBE是菱形;

2)若∠EAO+∠DCO180°,DC3,求四邊形ADOE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠ACB=90°,AC=4BC=8,點(diǎn)P從點(diǎn)A出發(fā),沿折線AC-CB以每秒2個(gè)單位長(zhǎng)度的速度向終點(diǎn)B運(yùn)動(dòng),當(dāng)點(diǎn)P不與點(diǎn)A,B重合時(shí),在邊AB上取一點(diǎn)Q,滿足∠PQA=2B,過點(diǎn)QQMPQ,交邊BC于點(diǎn)M,以PQ,QM為邊作矩形PQMN,設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒.

1)直接寫出線段PQ的長(zhǎng)(用含t的代數(shù)式表示);

2)當(dāng)矩形PQMN為正方形時(shí),求t的值;

3)設(shè)矩形PQMNABC重疊部分的面積為S,求St之間的函數(shù)關(guān)系式.

查看答案和解析>>

同步練習(xí)冊(cè)答案