【題目】如圖所示,∠1=∠2,AE⊥OB于E,BD⊥OA于D,交點(diǎn)為C,則圖中全等三角形共有( )
A.2對
B.3對
C.4對
D.5對
【答案】C
【解析】解:①△ODC≌△OEC
∵BD⊥AO于點(diǎn)D,AE⊥OB于點(diǎn)E,OC平分∠AOB
∴∠ODC=∠OEC=90°,∠1=∠2
∵OC=OC
∴△ODC≌△OEC(AAS)
∴OE=OD,CD=CE;
②△ADC≌△BEC
∵∠CDA=∠CEB=90°,∠3=∠4,CD=CE
∴△OBE≌△OCD(AAS)
∴AC=BC,AD=BE,∠B=∠A;
③△OAC≌△OBC
∵OD=OE
∴OA=OB
∵OA=OB,OC=OC,AC=BC
∴△ABO≌△ACO(SSS);
④△OAE≌△OBD
∵∠ODB=∠OEA=90°,OA=OB,OD=OE
∴△AEC≌△ADB(HL).
故選C.
根據(jù)已知條件可以找出題目中有哪些相等的角以及線段,然后猜想可能全等的三角形,然后一一進(jìn)行驗(yàn)證,做題時(shí)要由易到難,循序漸進(jìn).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,折疊矩形的一邊AD,使點(diǎn)D落在BC邊的點(diǎn)F處,已知AB=8cm,BC=10cm,求EC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( 。
A. 三角形分為等邊三角形和三邊不相等的三角形
B. 等邊三角形不是等腰三角形
C. 等腰三角形是等邊三角形
D. 三角形分為銳角三角形,直角三角形,鈍角三角形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù) 的圖象與x軸與交于點(diǎn)A、點(diǎn)B(2,0),與y軸交于點(diǎn)C,∠ACB=90o.
(1)求二次函數(shù)解析式;
(2)直線與軸平行,分別交線段AB、CB于點(diǎn)E、F,且與拋物線交于點(diǎn)P.
①求線段PF取得最大值時(shí),OE的長;
②四邊形ACPB的面積是否存在最大值?如果存在求出此最大值和點(diǎn)P的坐標(biāo);如果不存在,說明理由.
(3)不解方程組,直接寫出的解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,邊長為的菱形ABCD的頂點(diǎn)D在反比例函數(shù) (>0)的圖象上,A點(diǎn)的坐標(biāo)為(0,4),連接BD,交軸于點(diǎn)P.
(1)求菱形邊長及點(diǎn)C坐標(biāo);
(2)沿著線段BD平移,當(dāng)點(diǎn)C落在 (>0)上時(shí),求點(diǎn)B沿BD方向移動(dòng)的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,O為直線AB上一點(diǎn),OC平分∠AOE,∠DOE=90°,則以下結(jié)論正確的有____________.(只填序號)
①∠AOD與∠BOE互為余角;
②OD平分∠COA;
③∠BOE=56°40′,則∠COE=61°40′;
④∠BOE=2∠COD.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com