【題目】如圖,動點在平面直角坐標系中按圖中箭頭所示的方向運動,第1次從原點運動到(1,1),第2次接著運動到點(2,0),第3次接著運動到點(3,2),...按這樣的運動規(guī)律,經(jīng)過2019次運動后,動點的坐標為___________

【答案】(2019,2)

【解析】

先找出點的橫坐標的變化規(guī)律即可求出經(jīng)過2019次運動后,動點的橫坐標,然后找出點的縱坐標的變化規(guī)律即可求出結(jié)論.

解:由坐標可知:動點的橫坐標變化為:12、3、4……

∴經(jīng)過2019次運動后,動點的橫坐標為2019

動點的縱坐標變化為:10、2、01、0、2、0……每4個數(shù)字一循環(huán)

2019÷4=504……3

∴經(jīng)過2019次運動后,動點的縱坐標為2

∴經(jīng)過2019次運動后,動點的坐標為(2019,2)

故答案為:(2019,2)

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】4張相同的卡片上分別寫有數(shù)字1、23、4,將卡片背面朝上,洗勻后從中任意抽取1張,將卡片上的數(shù)字作為被減數(shù);一只不透明的袋子中裝有標號為1、2、33個小球,這些球除標號外都相同,攪勻后從中任意摸出1個球,將摸到的球的標號作為減數(shù).

1)求這兩個數(shù)的差為0的概率;

2)游戲規(guī)則規(guī)定:當抽到的這兩個數(shù)的差為非負數(shù)時,甲獲勝;否則,乙獲勝.這樣的規(guī)則公平嗎?如果不公平,請設計一個公平的規(guī)則,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)y=(x+2)2+m的圖象與y軸交于點C,點B在拋物線上,且與點C關于拋物線的對稱軸對稱,已知一次函數(shù)y=kx+b的圖象經(jīng)過該二次函數(shù)圖象上的點A(﹣1,0)及點B.

(1)求二次函數(shù)與一次函數(shù)的解析式;

(2)根據(jù)圖象,寫出滿足(x+2)2+m≥kx+b的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,AEBCE,點FBC延長線上,且CF=BE,連接AC,DF,

1)求證:四邊形AEFD是矩形;

2)若∠ACD=90°,CF=3,DF=4,求AD的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對于平面直角坐標系xOy中的點P和⊙C,給出如下的定義:若⊙C上存在兩個點AB,使得∠APB60°,則稱P為⊙C的可視點.

1)當⊙O的半徑為1時,

①在點E(1,1)、F(3,0)中,⊙O的可視點是______

②過點M(4,0)作直線ly=kx+b,若直線l上存在⊙O的可視點,求b的取值范圍;

2)若T(t,0),⊙T的半徑為1,直線y=上存在⊙T的可視點,且所有可視點構成的線段長度為n,若,直接寫出t 的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)的圖象交軸于兩點,交軸于點,點的坐標為,頂點的坐標為

(1)求二次函數(shù)的解析式和直線的解析式;

(2)點是直線上的一個動點,過點軸的垂線,交拋物線于點,當點在第一象限時,求線段長度的最大值;

(3)在拋物線上是否存在異于的點,使邊上的高為,若存在求出點的坐標;若不存在請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于A(﹣2,m),B(4,﹣2)兩點,與軸交于C點,過A作AD⊥軸于D.

(1)求這兩個函數(shù)的解析式;

(2)求△ADC的面積.

(3)根據(jù)圖象直接寫出不等式的解集

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】教材呈現(xiàn):下圖是華師版八年級上冊數(shù)學教材第96頁的部分內(nèi)容.

請根據(jù)教材中的分析,結(jié)合圖①,寫出角平分線的性質(zhì)定理完整的證明過程.

定理應用:

如圖②,在四邊形中,,點在邊上.平分,平分

1)求證:

2)若,則的長為______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形紙片 ABCD 中,AD=5cmAB=4cm,將矩形紙片 ABCD 沿直線l 折疊,使點 A 落在邊 BC 上的 A'處,當直線 l 恰好過點 D 時,用直尺和圓規(guī)在圖中作出直線 l,(保留作圖 痕跡,不寫作法),設點 A'與點 B 的距離為 x cm.并求出 x 的值.

查看答案和解析>>

同步練習冊答案