【題目】 如圖,ABC是等邊三角形,P是三角形內(nèi)一點,PDAB,PEBC,PFAC,若ABC的周長為18,則PD+PE+PF=( 。

A. 18B. 9

C. 6D. 條件不夠,不能確定

【答案】C

【解析】

因為要求PD+PE+PF的值,而PD、PE、PF并不在同一直線上,構(gòu)造平行四邊形,把三條線段轉(zhuǎn)化到一條直線上,求出等于AB,根據(jù)三角形的周長求出AB即可.

延長EPAB于點G,延長DPAC與點H

PDAB,PEBC,PFAC,∴四邊形AFPH、四邊形PDBG均為平行四邊形,∴PD=BG,PH=AF

又∵△ABC為等邊三角形,∴△FGP和△HPE也是等邊三角形,∴PE=PH=AF,PF=GF,∴PE+PD+PF=AF+BG+FG=AB6

故選C

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如果一個正整數(shù)能表示成兩個連續(xù)偶數(shù)的平方差,那么這個正整數(shù)為“神秘數(shù)”.

如:

因此,4,12,20這三個數(shù)都是神秘數(shù).

(1)282012這兩個數(shù)是不是神秘數(shù)?為什么?

(2)設兩個連續(xù)偶數(shù)為(其中為非負整數(shù)),由這兩個連續(xù)偶數(shù)構(gòu)造的神秘數(shù)是4的倍數(shù),請說明理由.

(3)兩個連續(xù)奇數(shù)的平方差(取正數(shù))是不是神秘數(shù)?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】函數(shù)的自變量x滿足 ≤x≤2時,函數(shù)值y滿足 ≤y≤1,則下列函數(shù)①y= x,②y= ,③y= ,④y=﹣ x+ ,⑤y=(x﹣1)2 , 符合條件的函數(shù)有( )
A.2個
B.3個
C.4個
D.5個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線AB、CD相交于點O,∠BOM=90°,∠DON=90°.

(1)若∠COM=∠AOC,求∠AOD的度數(shù);

2)若COM=BOC,求AOCMOD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】嘗試探究并解答:

(1)為了求代數(shù)式x2+2x+3的值,我們必須知道x的值x=1,則這個代數(shù)式的值為   x=2,則這個代數(shù)式的值為   ,可見,這個代數(shù)式的值因x的取值不同而   填“變化”或“不變”.盡管如此,我們還是有辦法來考慮這個代數(shù)式的值的范圍

(2)本學期我們學習了形如a2+2ab+b2a2﹣2ab+b2的式子,我們把這樣的多項式叫做“完全平方式”在運用完全平方公式進行因式分解時關(guān)鍵是判斷這個多項式是不是一個完全平方式同樣地,把一個多項式進行部分因式分解可以解決代數(shù)式的最大或最小值問題例如x2+2x+3=(x2+2x+1)+2=(x+1)2+2,因為x+1)2≥0,所以x+1)2+2≥2,所以這個代數(shù)式x2+2x+3有最小值是2,這時相應的x的值是   

(3)猜想:①4x2﹣12x+13的最小值是   

②﹣x2﹣2x+3   填“最大”或“最小”).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:點A,B,C在同一條直線上,點M、N分別是AB、AC的中點,如果AB=10cm,AC=8cm,那么線段MN的長度為( 。

A. 6cm B. 9cm C. 3cm6cm D. 1cm9cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】正方形ABCD的邊長為acm,E、F分別是BC、CD的中點,連接BF、DE,則圖中陰影部分的面積是cm2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】先閱讀下面的例題,再解答后面的題目.

例:已知x2+y2﹣2x+4y+5=0,求x+y的值.

解:由已知得(x2﹣2x+1)+(y2+4y+4)=0,

即(x﹣1)2+(y+2)2=0.

因為(x﹣1)2≥0,(y+2)2≥0,它們的和為0,

所以必有(x﹣1)2=0,(y+2)2=0,

所以x=1,y=﹣2.

所以x+y=﹣1.

題目:已知x2+4y2﹣6x+4y+10=0,求xy的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在長度為1個單位的小正方形組成的正方形網(wǎng)格中,點A、B、C在小正方形的頂點上.

(1)在圖中畫出與△ABC關(guān)于直線MN成軸對稱的△A1B1C1;(不寫畫法)

(2)請你判斷△ABC的形狀,并求出AC邊上的高.

查看答案和解析>>

同步練習冊答案