【題目】如圖,在△ABC中,D、E分別是AC、AB上的點,BD與CE相交于點O,給出四個條件:①OB=OC;②∠EBO=∠DCO;③∠BEO=∠CDO;④BE=CD.上述四個條件中,選擇兩個可以判定△ABC是等腰三角形的方法有( 。
A.2種B.3種C.4種D.6種
【答案】C
【解析】
①②:求出OBC=∠OCB,推出∠ACB=∠ABC即可的等腰三角形;①③:證△EBO≌△DCO,得出∠EBO=∠DCO,求出∠ACB=∠ABC即可;②④:證△EBO≌△DCO,推出OB=OC,求出∠ABC=∠ACB即可;③④:證△EBO≌△DCO,推出∠EBO=∠DCO,OB=OC,求出∠OBC=∠OCB,推出∠ACB=∠ABC即可.
解:有①②,①③,②④,③④,共4種,
①②,
理由是:∵OB=OC,
∴∠OBC=∠OCB,
∵∠EBO=∠DCO,
∴∠EBO+∠OBC=∠DCO+∠OCB,
即∠ABC=∠ACB,
∴AB=AC,
即△ABC是等腰三角形;
①③,
理由是:∵在△EBO和△DCO中 ,
∴△EBO≌△DCO,
∴∠EBO=∠DCO,
∵∠OBC=∠OCB(已證),
∴∠EBO+∠OBC=∠DCO+∠OCB,
即∠ABC=∠ACB,
即AB=AC,
∴△ABC是等腰三角形;
②④,
理由是:∵在△EBO和△DCO中,
∴△EBO≌△DCO,
∴OB=OC,
∴∠OBC=∠OCB,
∴∠EBO+∠OBC=∠DCO+∠OCB,
即∠ABC=∠ACB,
即AB=AC,
∴△ABC是等腰三角形;
③④,
理由是:∵在△EBO和△DCO中,
∴△EBO≌△DCO,
∴∠EBO=∠DCO,OB=OC,
∴∠OBC=∠OCB,
∴∠EBO+∠OBC=∠DCO+∠OCB,
即∠ABC=∠ACB,
即AB=AC,
∴△ABC是等腰三角形;
故選C.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知∠AOB的大小為α,P是∠AOB內部的一個定點,且OP=2,點E、F分別是OA、OB上的動點,若△PEF周長的最小值等于2,則α=( )
A. 30°B. 45°C. 60°D. 15°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“垃圾不落地,城市更美麗”.某中學為了了解七年級學生對這一倡議的落實情況,學校安排政教處在七年級學生中隨機抽取了部分學生,并針對學生“是否隨手丟垃圾”這一情況進行了問卷調查,統(tǒng)計結果為:A為從不隨手丟垃圾;B為偶爾隨手丟垃圾;C為經(jīng)常隨手丟垃圾三項.要求每位被調查的學生必須從以上三項中選一項且只能選一項.現(xiàn)將調查結果繪制成以下來不辜負不完整的統(tǒng)計圖.
請你根據(jù)以上信息,解答下列問題:
(1)補全上面的條形統(tǒng)計圖和扇形統(tǒng)計圖;
(2)所抽取學生“是否隨手丟垃圾”情況的眾數(shù)是 ;
(3)若該校七年級共有1500名學生,請你估計該年級學生中“經(jīng)常隨手丟垃圾”的學生約有多少人?談談你的看法?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在中,,,點是上一點.
(1)如圖,平分.求證:;
(2)如圖,點在線段上,且,,求證:.
(3)如圖,,過點作交的延長線于點,連接,過點作交于,求證:.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,過邊長為3的等邊△ABC的邊AB上一點P,作PE⊥AC于E,Q為BC延長線上一點,當PA=CQ時,連PQ交AC邊于D,則DE的長為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線lAC:y=﹣交x軸、y軸分別為A、C兩點,直線BC⊥AC交x軸于點B.
(1)求點B的坐標及直線BC的解析式;
(2)將△OBC關于BC邊翻折,得到△O′BC,過點O′作直線O′E垂直x軸于點E,F(xiàn)是y軸上一點,P是直線O′E上任意一點,P、Q兩點關于x軸對稱,當|PA﹣PC|最大時,請求出QF+FC的最小值;
(3)若M是直線O′E上一點,且QM=3,在(2)的條件下,在平面直角坐標系中,是否存在點N,使得以Q、F、M、N四點為頂點的四邊形是平行四邊形?若存在,請直接寫出點N的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABCD中,AB=4,AD=5,tanA=,點P從點A出發(fā),沿折線AB﹣BC以每秒1個單位長度的速度向中點C運動,過點P作PQ⊥AB,交折線AD﹣DC于點Q,將線段PQ繞點P順時針旋轉90°,得到線段PR,連接QR.設△PQR與ABCD重疊部分圖形的面積為S(平方單位),點P運動的時間為t(秒).
(1)當點R與點B重合時,求t的值;
(2)當點P在BC邊上運動時,求線段PQ的長(用含有t的代數(shù)式表示);
(3)當點R落在ABCD的外部時,求S與t的函數(shù)關系式;
(4)直接寫出點P運動過程中,△PCD是等腰三角形時所有的t值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有一家糖果加工廠,它們要對一款奶糖進行包裝,要求每袋凈含量為100g.現(xiàn)使用甲、乙兩種包裝機同時包裝100g的糖果,從中各抽出10袋,測得實際質量(g)如下:
甲:101,102,99,100,98,103,100,98,100,99
乙:100,101,100,98,101,97,100,98,103,102
(1)分別計算兩組數(shù)據(jù)的平均數(shù)、眾數(shù)、中位數(shù);
(2)要想包裝機包裝奶糖質量比較穩(wěn)定,你認為選擇哪種包裝機比較適合?簡述理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com