【題目】如圖,在△ABC,AB=AC,以AB為直徑的⊙O分別交AC、BC于點D、E,點F在AC的延長線上,且∠CAB=2∠CBF.
(1)試判斷直線BF與⊙O的位置關系,并說明理由;
(2)若AB=6,BF=8,求tan∠CBF.
【答案】(1)BF為⊙O的切線;理由詳見解析;(2).
【解析】
試題分析:(1)連接AE.通過AB⊥BF,點B在⊙O上可以推知BF為⊙O的切線;
(2)作輔助線CG(過點C作CG⊥BF于點G)構建平行線AB∥CG.由“平行線截線段成比例”知==,從而求得FG的值;然后根據(jù)圖形中相關線段間的和差關系求得直角三角形CBG的兩直角邊BG、CG的長度;最后由銳角三角函數(shù)的定義來求tan∠CBF的值.
試題解析:(1)BF為⊙O的切線.理由如下:
連接AE.
∵AB為⊙O的直徑,
∴∠AEB=90°(直徑所對的圓周角是直角),
∴∠BAE+∠ABE=90°(直角三角形的兩個銳角互余);
又∵AB=AC,AE⊥BC,
∴AE平分∠BAC,即∠BAE=∠CAE;
∵∠CAB=2∠CBF,
∴∠BAE=∠CBF,
∴∠BAE+∠ABE=∠ABE+∠CBF=90°,即AB⊥BF,
∵OB是半徑,
∴BF為⊙O的切線;
(2)過點C作CG⊥BF于點G.
在Rt△ABF中,AB=6,BF=8,
∴AF=10(勾股定理);
又∵AC=AB=6
∴CF=4;
∵CG⊥BF,AB⊥BF,
∴CG∥AB,
∴==,(平行線截線段成比例),
∴FG=,
由勾股定理得:CG==,
∴BG=BF﹣FG=8﹣=,
在Rt△BCG中,tan∠CBF==.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點O為平面直角坐標系的原點,點A在x軸上,△OAB是邊長為4的等邊三角形,以O為旋轉中心,將△OAB按順時針方向旋轉60°,得到△OA′B′,那么點A′的坐標為( 。
A. (2,2) B. (﹣2,4) C. (﹣2,2) D. (﹣2,2)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】對于數(shù)軸上的三點,給出如下定義:若其中一個點與其他兩個點的距離恰好滿足2倍的數(shù)量關系,則稱該點是其他兩點的“倍聯(lián)點”. 例如數(shù)軸上點所表示的數(shù)分別為1,3,4,滿足,此時點是點的“倍聯(lián)點”.
若數(shù)軸上點表示,點表示6,回答下列問題:
(1)數(shù)軸上點分別對應0,3. 5和11,則點_________是點的“倍聯(lián)點”,點是________這兩點的“倍聯(lián)點”;
(2)已知動點在點的右側,若點是點的倍聯(lián)點,求此時點表示的數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某檢修小組從地出發(fā),在東西向的馬路上檢修線路,如果規(guī)定向東行駛為正,向西行駛為負,一天中七次行駛紀錄如下.(單位:)
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | 第六次 | 第七次 |
(1)在第__________次記錄時距地最遠;
(2)求收工時距地多遠?
(3)若每千米耗油升,每升汽油需元,問檢修小組工作一天需汽油費多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知點A(10.0)及在第一象限的動點P(x,y),且x+y=12,設△OPA的面積為S。
(1)求S關于x的函數(shù)解析式;
(2)求x的取值范圍;
(3)當S=15時,求P點坐標;
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,點P為四邊形ABCD所在平面上的點,如果∠PAD=∠PBC,則稱點P為四邊形ABCD關于A、B的等角點,以點C為坐標原點,BC所在直線為軸建立平面直角坐標系,點B的橫坐標為﹣6.
(1)如圖2,若A、D兩點的坐標分別為A(﹣6,4)、D(0,4),點P在DC邊上,且點P為四邊形ABCD關于A、B的等角點,則點P的坐標為 _________ ;
(2)如圖3,若A、D兩點的坐標分別為A(﹣2,4)、D(0,4).
①若P在DC邊上時,則四邊形ABCD關于A、B的等角點P的坐標為 _________ ;
②在①的條件下,將PB沿軸向右平移個單位長度(0<<6)得到線段P′B′,連接P′D,B′D,試用含的式子表示P′D2+B′D2,并求出使P′D2+B′D2取得最小值時點P′的坐標;
③如圖4,若點P為四邊形ABCD關于A、B的等角點,且點P坐標為(1, ),求的值;
④以四邊形ABCD的一邊為邊畫四邊形,所畫的四邊形與四邊形ABCD有公共部分,若在所畫的四邊形內存在一點P,使點P分別是各相鄰兩頂點的等角點,且四對等角都相等,請直接寫出所有滿足條件的點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】河南開封的西瓜個大瓤紅且甜,全國知名某瓜農(nóng)準備從某貨運公司租用大小兩種型號的貨車運輸西瓜到外地銷售,已知一輛大型貨車和一輛小型貨車每次共運10噸;兩輛大型貨車和三輛小型渣貨車每次共運24噸.
求一輛大型貨車和一輛小型貨車每次各運西瓜多少噸?
已知一輛大型貨車運輸花費為400元次,一輛小型貨車運輸花費為300元次,計劃用20輛貨車運輸,且每次運輸西瓜總重量不少于96噸,如何安排才能使每次運費最低,最低費用是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:,,,設,,,……,
(1)計算___________,____________,____________
(2)寫出,,,四者之間的關系,并證明你的結論.
(3)根據(jù)(2)的結論,直接寫出的值是_____________
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,已知正方形ABCD的邊長為1,點P是AD邊上的一個動點,點A關于直線BP的對稱點是點Q,連接PQ、DQ、CQ、BQ,設AP=x.
(1)BQ+DQ的最小值是_______,此時x的值是_______;
(2)如圖②,若PQ的延長線交CD邊于點E,并且∠CQD=90°.
①求證:點E是CD的中點; ②求x的值.
(3)若點P是射線AD上的一個動點,請直接寫出當△CDQ為等腰三角形時x的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com