【題目】某工廠甲、乙兩名工人參加操作技能培訓(xùn),現(xiàn)分別從他們在培訓(xùn)期間參加的若干次測試成績中隨機(jī)抽取5次,記錄如下:
甲 | 85 | 88 | 84 | 85 | 83 |
乙 | 83 | 87 | 84 | 86 | 85 |
(1)請你分別計算這兩組數(shù)據(jù)的平均數(shù);
(2)現(xiàn)要從中選派一人參加操作技能比賽,從統(tǒng)計學(xué)的角度考慮,你認(rèn)為選派哪名工人參加合適?請說明理由.
【答案】甲的平均數(shù)85,乙的平均數(shù)85;(2)選派乙工人參加合適.理由見解析
【解析】試題分析:(1)根據(jù)平均數(shù)的概念列式計算即可得解;
(2)求出兩人測試成績的方差,然后根據(jù)方差越小越穩(wěn)定選擇合適人選.
試題解析:
(1)甲平均數(shù): ×(85+88+84+85+83)=×425=85,
乙平均數(shù): ×(83+87+84+86+85)=×425=85;
(2)選派乙工人參加合適.
理由如下:S甲2=×[(85-85)2+(88-85)2+(84-85)2+(85-85)2+(83-85)2],
=×(0+9+1+0+4),
=2.8,
S乙2=×[(83-85)2+(87-85)2+(84-85)2+(86-85)2+(85-85)2],
=×(4+4+1+1+0),
=2,
∵2.8>2,
∴S甲2>S乙2,
∴乙成績更穩(wěn)定,
∴選派乙工人參加合適.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,線段AB、CD相交于點O,連結(jié)AD、CB,我們把這個圖形稱為“8字型”根據(jù)三角形內(nèi)角和容易得到:∠A+∠D=∠C+∠B.
(1)用“8字型”
如圖2,∠A+∠B+∠C+∠D+∠E+∠F=___________;
(2)造“8字型”
如圖3,∠A+∠B+∠C+∠D+∠E+∠F+∠G=_____________;
(3)發(fā)現(xiàn)“8字型”
如圖4,BE、CD相交于點A,CF為∠BCD的平分
線,EF為∠BED的平分線.
①圖中共有________個“8字型”;
②若∠B:∠D:∠F=4:6:x,求x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知平行四邊形中,對角線交于點, 是延長線上的點,且是等邊三角形.
(1)求證:四邊形是菱形;
(2)若,求證:四邊形是正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】楊梅是漳州的特色時令水果,楊梅一上市,水果店的老板用1200元購進(jìn)一批楊梅,很快售完;老板又用2500元購進(jìn)第二批楊梅,所購件數(shù)是第一批的2倍,但進(jìn)價比第一批每件多了5元.
(1)第一批楊梅每件進(jìn)價多少元?
(2)老板以每件150元的價格銷售第二批楊梅,售出80%后,為了盡快售完,決定打折促銷,要使第二批楊梅的銷售利潤不少于320元,剩余的楊梅每件售價至少打幾折?(利潤=售價﹣進(jìn)價)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明拋硬幣的過程(每枚硬幣只有正面朝上和反面朝上兩種情況)見下表,閱讀并回答問題:
拋擲結(jié)果 | 10次 | 50次 | 500次 | 5000次 |
出現(xiàn)正面次數(shù) | 3 | 24 | 258 | 2498 |
出現(xiàn)正面的頻率 | 30% | 48% | 51.6% | 49.96% |
(1)從表中可知,當(dāng)拋完10次時正面出現(xiàn)3次,正面出現(xiàn)的頻率為30%,那么,小明拋完10次時,得到 次反面,反面出現(xiàn)的頻率是 ;
(2)當(dāng)他拋完5000次時,反面出現(xiàn)的次數(shù)是 ,反面出現(xiàn)的頻率是 ;
(3)通過上表我們可以知道,正面出現(xiàn)的頻數(shù)和反面出現(xiàn)的頻數(shù)之和等于
,正面出現(xiàn)的頻率和反面出現(xiàn)的頻率之和等于 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】因式分解:
(1)169(a-b)2-196(a+b)2;
(2)m4-2m2n2+n4;
(3)m2(m-1)-4(1-m2).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,分別以點A和點B為圓心,以相同的長(大于AB)為半徑作弧,兩弧相交于點M和點N,作直線MN交AB于點D,交BC于點E.若AC=3,AB=5,則DE等于( )
A. 2 B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形MNPQ網(wǎng)格中,每個小方格的邊長都相等,正方形ABCD的頂點在正方形MNPQ的小方格頂點上.
(1)設(shè)正方形MNPQ網(wǎng)格內(nèi)的每個小方格的邊長為1,求:
①△ABQ,△BCM,△CDN,△ADP的面積;
②正方形ABCD的面積;
(2)設(shè)MB=a,BQ=b,利用這個圖形中的直角三角形和正方形的面積關(guān)系,你能驗證勾股定理嗎?相信你能給出簡明的推理過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法中,不正確的是( )
A. 平方等于本身的數(shù)只有和 B. 正數(shù)的絕對值是它本身,負(fù)數(shù)的絕對值是它的相反數(shù)
C. 兩個數(shù)的差為正數(shù),至少其中有一個正數(shù) D. 兩個負(fù)數(shù),絕對值大的負(fù)數(shù)反而小
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com